

ISSN: 2320-2831

International Journal of Pharmacy and Analytical Research (IJPAR)

IJPAR | Vol.14 | Issue 4 | Oct - Dec -2025 www.ijpar.com

DOI: https://doi.org/10.61096/ijpar.v14.iss4.2025.1080 -1095

Research

RP-HPLC METHOD FOR ESTIMATION OF ABACAVIR, LAMIVUDINE AS PER ICH GUIDELINES

Gollapalli Vandana^{1*}, Dr.l. Harikiran², Dr. l. Harikiran²

^{1,2}Department Of Pharmaceutical Analysis, Princeton College Of Pharmacy In Narapally, Ghatkesar, Telangana.

*Author for Correspondence: Gollapalli Vandana

Email: princeton.pharmacy@gmail.com

Check for updates	Abstract
Published on:	A novel, precise, accurate, rapid and cost effective isocratic reverse phase high performance liquid chromatographic (RP-HPLC) method was developed, optimized and validated for the estimation of Abacavir and Lamivudine in
Published by: Futuristic Publications 2025 All rights reserved. Creative Commons Attribution 4.0 International License.	bulk and pharmaceutical dosage forms. The drugs were estimated using Phenomenex Gemini C18 (4.6mm×150mm, 5.0 μm) particle size column. A mobile phase composed of tri ethylamine buffer and methanol in proportion of 32:68 v/v, at a flow rate of 1.0 ml/min was used for the separation. Detection was carried out at 248 nm. The linearity range obtained was 30-70 μg/ml for Darunavir and 10-50 μg/ml for Cobicistat with retention times (Rt) of 3.297 min and 5.405 min for Abacavir and Lamivudine respectively. The correlation coefficient values were found to be 0.999 & 0.999. Precession studies showed % RSD values less than 2 % for both the drugs in all the selected concentrations. The percentage recoveries of Abacavir and Lamivudine were found to be 100.1873% for Darunavir and 100.748% for Cobicistat respectively. The assay results of Abacavir and Lamivudine were found to be 99.82%. The limit of detection (LOD) and limit of quantification (LOQ) were 2.6μg/ml and 7.8μg/ml for Darunavir and 3.4μg/ml 10.2μg/ml for Cobicistat respectively. The proposed method was validated as per the International Conference on Harmonization (ICH) guidelines. The proposed validated method was successfully used for the quantitative analysis of commercially available dosage form.
	Keywords: Abacavir and Lamivudine, RP-HPLC, ICH Guidelines, Validation.

1. INTRODUCTION

1.1 Chromatography ²

1.1.1 Introduction

The chromatography was discovered by Russian Chemist and botanist *Micheal Tswett* (1872-1919) who first used the term chromatography (colour writing derived from Greek for colour – Chroma, and write – graphein) to describe his work on the separation of coloured plant pigments into bands on a column of chalk and other material such as polysaccharides, sucrose and insulin.

" Chromatography is a method in which the components of a mixture are separated on an adsorbent column in a flowing system".

The adsorbent material, or stationary phase, first described by Russian scientist named Tswett in 1906, has taken many forms over the years, including paper, thin layers of solids attached to glass plates, immobilized liquids, gels, and solid particles packed in columns.

"Chromatography is a physical method of separation in which the component to be separated are distributed between two phases of which in stationary while other moves in a definite direction (IUPAC)"

1.1.2. Types of Chromatography

The mobile phase could be either a liquid or a gas, and accordingly we can subdivide chromatography into Liquid Chromatography (LC) or Gas Chromatography (GC). Apart from these methods, there are two other modes that use a liquid mobile phase, but the nature of its transport through the porous stationary phase is in the form of either (a) capillary forces, as in planar chromatography (also called Thin-Layer Chromatography, TLC), or (b) electro osmotic flow, as in the case of Capillary Electro Chromatography (CEC).

1. Adsorption chromatography

Chromatography in which separation is based mainly on difference between the adsorption affinities of the sample components for the surface of an active solid. The analyte interact with solid stationary surface and are displaced with eluent for active sites on surface.

2. Partition chromatography

This method results from a thermodynamic distribution of analytes between two liquid phases. On the basis of relative polarities of stationary and mobile phase, partition chromatography can be divided in to normal phase and reverse phase chromatography. In normal phase chromatography, the stationary phase bed is strongly polar in nature (e.g. Silica gel) and the mobile phase is non-polar (such as n-hexane or tetrahydrofuran). Polar sample are thus retained on polar surface of the column packing longer than polar material while in reverse phase chromatography, the stationary bed is non-polar (hydrophobic in nature, while the mobile phase is polar liquid, such as mixture of water and methanol or Acetonitrile. Here the more non polar the material is, the longer it will retain.

3. Size-exclusion chromatography

This involves a solid stationary phase with controlled pore size. Solids are separated according to molecular size, with the large molecule unable to enter the pores eluted first.

4. Ion- exchange chromatography

Involves a solid stationary phase with anionic or cationic groups on the surface to separation, HPLC and HPTLC methods have widely been exploited in pharmaceutical analysis because of its simplicity, precision, accuracy and reproducibility of result.

5. Solid-Phase Extraction [SPE]

A sample preparation technique that uses LC principles to isolate, enriches, and/or purifies analytes from a complex matrix applied to a miniature chromatographic bed. *Offline* SPE is done with larger particles in individual plastic cartridges or in micro-elution plate wells, using low positive pressure or vacuum to assist flow. *Online* SPE is done with smaller particles in miniature HPLC columns using higher pressures and a valve to switch the SPE column online with the primary HPLC column, or offline to waste, as appropriate. SPE methods use step gradients to accomplish bed conditioning, sample loading, washing, and elution steps. The goal is to remove matrix interferences and to isolate the analyte in a solution, and at a concentration, suitable for subsequent analysis.

1.2.1. High Performance Liquid Chromatography (HPLC) 6

The acronym *HPLC*, coined by the Late Prof. Csaba Horvath for his 1970 Pittconpaper, originally indicated the fact that high pressure was used to generate the flow required for liquid chromatography in packed columns. In the beginning, pumps only had a pressure capability of 500 psi [35 bars]. This was called *high pressure liquid chromatography*, or HPLC. The early 1970s saw a tremendous leap in technology. These new HPLC instruments could develop up to 6,000 psi [400 bars] of pressure, and incorporated improved injectors, detectors, and columns. With continued advances in performance during this time [smaller particles, even higher pressure], the acronym HPLC remained the same, but the name was changed to high performance liquid chromatography.

High Performance Liquid Chromatography is now one of the most powerful tools in analytical chemistry. It has the ability to separate, identify, and quantitative the compounds that are present in any sample that can be dissolved in a liquid. Today, compounds in trace concentrations as low as *parts per trillion* (ppt) may easily be identified. HPLC can be, and has been, applied to just about any sample, such as pharmaceuticals, food, nutraceuticals, cosmetics, environmental matrices, forensic samples, and industrial chemicals.

Polymer based columns

Polymer based stationary phases show higher pH stability but lower mechanical stability, compared to silica based columns. Also, polymer based packing's are not compatible with all organic solvents. They swell or shrink in some organic solvents. Unfortunately, the pressure stability and solvent compatibility are different for the different nature of polymers and from manufacturer to manufacturer. Therefore, no general rules for the column care of polymer based materials can be given. Always read the instructions for the use of those columns. In case of doubt please contact the corresponding manufacturer.

EXPERIMENTAL METHODS

INSTRUMENTS USED

Instruments and Glass wares Model

HPLC WATERS Alliance 2695 separation module, Software: Empower 2, 996 PDA detector.

pH meter Lab India

Weighing machine Sartorius

Volumetric flasks Borosil

Pipettes and Burettes Borosil

CHEMICALS USED:

Chemical Brand names

Abacavir (Pure) Sura labs

Lamivudine (Pure) Sura labs

Water and Methanol for HPLC LICHROSOLV (MERCK)

Acetonitrile for HPLC Merck

RESULTS AND DISCUSSION

Trail 5 (Optimized Chromatogram):

Column : Phenomenex Gemini C18 (4.6mm×150mm, 5.0 μm) particle size

Column temperature $: 38^{\circ}C$ Wavelength : 248nm

Mobile phase ratio : Methanol: TEA buffer pH 4.8 (32:68v/v)

Flow rate : 1ml/min
Injection volume : 20µl

Run time : 7minutes

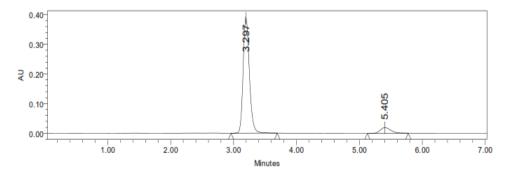


Figure-: Optimized Chromatogram (Standard)

Table-: Optimized Chromatogram (Standard)

S.No	Name	RT	Area	Height	USP Tailing	USP Plate Count	USP Resolution
1	Abacavir	3.297	859856	42569	1.24	7896	
2	Lamivudine	5.405	5698	3652	1.36	6582	6.8

Observation: From the above chromatogram it was observed that the Abacavir and Lamivudine peaks are well separated and they shows proper retention time, resolution, peak tail and plate count. So it's optimized trial.

Optimized Chromatogram (Sample)

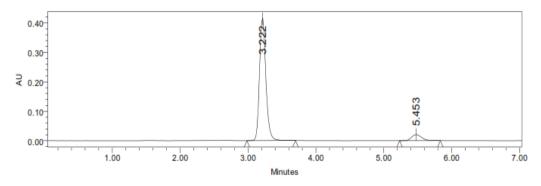


Figure-: Optimized Chromatogram (Sample)

Table-: Optimized Chromatogram (Sample)

S	.No	Name	RT	Area	Height	USP Tailing	USP Plate Count	USP Resolution
	1	Abacavir	3.222	865898	43659	1.26	7985	
	2	Lamivudine	5.453	5789	3785	1.38	6659	7.0

Acceptance Criteria:

- Resolution between two drugs must be not less than 2.
- Theoretical plates must be not less than 2000.
- Tailing factor must be not less than 0.9 and not more than 2.
- It was found from above data that all the system suitability parameters for developed method were within the limit.

METHOD VALIDATION

Blank:

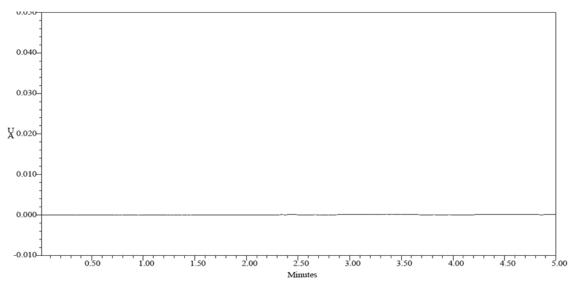


Fig: Chromatogram showing blank (mobile phase preparation)

System Suitability:

Table-: Results of system Suitability for Abacavir

S.No.	Peak Name	RT	Area (μV*sec)	Height (μV)	USP Plate Count	USP Tailing
1	Abacavir	3.200	859865	42568	7895	1.24
2	Abacavir	3.248	859788	42587	7859	1.24
3	Abacavir	3.299	857984	42659	7869	1.24
4	Abacavir	3.297	854879	42875	7849	1.24
5	Abacavir	3.297	857896	42487	7859	1.23
Mean			858082.4			
Std. Dev.			2024.409			
% RSD			0.235922			

Acceptance Criteria:

- %RSD of five different sample solutions should not more than 2.
- The %RSD obtained is within the limit, hence the method is suitable.

Table-: Results of System Suitability for Lamivudine

S.No	Peak Name	RT	Area (μV*sec)	Height (μV)	USP Plate Count	USP Tailing
1	Lamivudine	5.413	5689	3659	6583	1.36
2	Lamivudine	5.484	5687	3648	6592	1.37
3	Lamivudine	5.405	5682	3698	6549	1.37
4	Lamivudine	5.405	5649	3675	6571	1.36
5	Lamivudine	5.409	5674	3649	6529	1.36
Mean			5676.2			
Std. Dev.			16.2696			
% RSD			0.286628			

Acceptance Criteria:

- %RSD of five different sample solutions should not more than 2.
- The %RSD obtained is within the limit, hence the method is suitable.

SPECIFICITY

The ICH documents define specificity as the ability to assess unequivocally the analyte in the presence of components that may be expected to be present, such as impurities, degradation products, and matrix components.

Analytical method was tested for specificity to measure accurately quantitate Abacavir and Lamivudine in drug product.

Assay (Standard):

Table-: Peak Results for Assay Standard

Abacavir

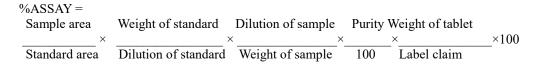
S.No.	Name	RT	Area	Height	USP Tailing	USP Plate Count
1	Abacavir	3.211	859785	42598	1.25	7856

2	Abacavir	3.222	859865	42895	1.24	7859
3	Abacavir	3.254	857849	42578	1.25	7869

Lamivudine

S.No	Name	RT	Area	Height	USP Tailing	USP Plate Count	Resolution
1	Lamivudine	5.414	5699	3685	1.36	6598	6.9
2	Lamivudine	5.453	5687	3659	1.37	6537	6.9
3	Lamivudine	5.424	5689	3649	1.36	6582	7.0

Assay (Sample):


Table-: Peak Results for Assay sample

Abacavir

S.No	Name	RT	Area	Height	USP Tailing	USP Plate Count
1	Abacavir	3.297	865985	43659	1.26	7985
2	Abacavir	3.294	865798	43875	1.26	7925
3	Abacavir	3.295	865456	43659	1.27	7946

Lamivudine

S.No	Name	RT	Area	Height	USP Tailing	USP Plate Count	Resolution
1	Lamivudine	5.435	5789	3659	1.37	6659	6.9
2	Lamivudine	5.417	5798	3684	1.38	6689	7.0
3	Lamivudine	5.434	5749	3695	1.38	6648	6.9

The % purity of Abacavir and Lamivudine in pharmaceutical dosage form was found to be 99.82%.

LINEARITY

CHROMATOGRAPHIC DATA FOR LINEARITY STUDY:

Abacavir

Concentration	Average
μg/ml	Peak Area
20	164436
30	255571
40	348687
50	439024
60	534830

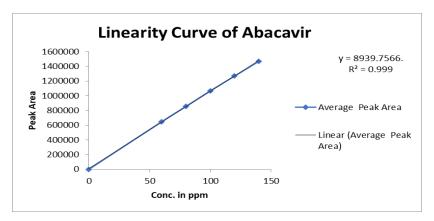


Fig-: Calibration Curve of Abacavir

LINEARITY PLOT:

The plot of Concentration (x) versus the Average Peak Area (y) data of Abacavir is a straight line.

$$Y = mx + c$$

Slope (m) = 8939

Intercept (c) = 9566

Correlation Coefficient (r) = 0.999

VALIDATION CRITERIA: The response linearity is verified if the Correlation Coefficient is 0.99 or greater.

CONCLUSION: Correlation Coefficient (r) is 0.99, and the intercept is 7566. These values meet the validation criteria.

Lamivudine

Concentration	Average
μg/ml	Peak Area
25	1782454
37.5	2728974
50	3688678
62.5	4658022

75	5592695

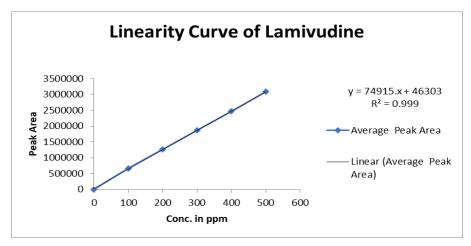


Fig-: Calibration Curve of Lamivudine

LINEARITY PLOT:

The plot of Concentration (x) versus the Average Peak Area (y) data of Lamivudine is a straight line.

$$Y = mx + c$$

Slope (m) = 74915

Intercept (c) = 46303

Correlation Coefficient (r) = 0.999

VALIDATION CRITERIA: The response linearity is verified if the Correlation Coefficient is 0.99 or greater.

CONCLUSION: Correlation Coefficient (r) is 0.99, and the intercept is 46303. These values meet the validation criteria.

PRECISION:

The precision of an analytical procedure expresses the closeness of agreement (degree of scatter) between a series of measurements obtained from multiple sampling of the same homogeneous sample under the prescribed conditions.

REPEATABILITY

Obtained Five (5) replicates of 100% accuracy solution as per experimental conditions. Recorded the peak areas and calculated % RSD.

S. No.	Peak name	Retention time	Area(μV*sec)	Height (μV)	USP Plate Count	USP Tailing
1	Abacavir	3.213	859856	42659	7859	1.24
2	Abacavir	3.253	857985	42598	7869	1.24
3	Abacavir	3.297	856984	42587	7846	1.25
4	Abacavir	3.215	856987	42569	7819	1.25

Table-: Results of Repeatability for Abacavir:

5	Abacavir	3.254	859878	42894	7856	1.24
Mean			858338			
Std.dev			1454.222			
%RSD			0.169423			

Acceptance criteria:

- %RSD for sample should be NMT 2
- The %RSD for the standard solution is below 1, which is within the limits hence method is precise.

Table-: Results of repeatability for Lamivudine:

S. No.	Peak Name	Retention time	Area(μV*sec)	Height (μV)	USP Plate Count	USP Tailing
1	Lamivudine	5.441	5697	3659	6592	1.36
2	Lamivudine	5.442	5689	3648	6539	1.36
3	Lamivudine	5.409	5698	3692	6584	1.37
4	Lamivudine	5.520	5639	3648	6579	1.36
5	Lamivudine	5.424	5688	3689	6549	1.36
Mean			5682.2			
Std.dev			24.57031			
%RSD			0.432408			

Intermediate precision:

Day 1:

Table-: Results of Intermediate precision for Abacavir

S.No.	Peak Name	RT	Area (μV*sec)	Height (μV)	USP Plate count	USP Tailing
1	Abacavir	3.211	868956	43659	7985	1.26
2	Abacavir	3.211	869857	43985	7954	1.27
3	Abacavir	3.210	865983	43879	7946	1.26
4	Abacavir	3.212	866587	43865	7963	1.27
5	Abacavir	3.211	864256	43875	7964	1.26

6	Abacavir	3.297	868974	43562	7942	1.26
Mean			867435.5			
Std. Dev.			2167.095			
% RSD			0.249828			

Acceptance criteria:

• %RSD of six different sample solutions should not more than 2.

Table-: Results of Intermediate precision for Lamivudine

S.No.	Peak Name	RT	Area (μV*sec)	Height (μV)	USP Plate count	USP Tailing
1	Lamivudine	5.411	5785	3789	6659	1.37
2	Lamivudine	5.410	5798	3758	6625	1.38
3	Lamivudine	5.420	5766	3746	6649	1.38
4	Lamivudine	5.423	5746	3795	6675	1.37
5	Lamivudine	5.419	5782	3761	6653	1.38
6	Lamivudine	5.409	5786	3752	6627	1.37
Mean			5777.167			
Std. Dev.			18.40018			
% RSD			0.318498			

Acceptance Criteria:

• %RSD of six different sample solutions should not more than 2.

Day 2:

Table-: Results of Intermediate precision Day 2 for Abacavir

S.No.	Peak Name	RT	Area (μV*sec)	Height (μV)	USP Plate Count	USP Tailing
1	Abacavir	3.211	845985	44585	8025	1.27
2	Abacavir	3.233	847895	44895	8069	1.28

3	Abacavir	3.244	848985	44758	8046	1.27
4	Abacavir	3.297	847859	44548	8094	1.28
5	Abacavir	3.297	845984	44865	8042	1.28
6	Abacavir	3.202	847898	44254	8076	1.27
Mean			847434.3			
Std. Dev.			1201.345			
% RSD			0.141763			

Acceptance Criteria:

• %RSD of six different sample solutions should not more than 2.

Table-: Results of Intermediate precision Day 2 for Lamivudine

S.No.	Peak Name	RT	Area (μV*sec)	Height (µV)	USP Plate Count	USP Tailing
1	Lamivudine	5.411	5898	3986	6852	1.39
2	Lamivudine	5.410	5884	3955	6864	1.39
3	Lamivudine	5.420	5863	3956	6829	1.40
4	Lamivudine	5.405	5845	3945	6874	1.39
5	Lamivudine	5.409	5896	3925	6829	1.39
6	Lamivudine	5.463	5874	3962	6825	1.40
Mean			5876.667			
Std. Dev.			20.39281			
% RSD			0.347013			

Acceptance Criteria:

• %RSD of six different sample solutions should not more than 2.

ACCURACY:

Accuracy at different concentrations (50%, 100%, and 150%) was prepared and the % recovery was calculated.

Table-: The accuracy results for Abacavir

%Concentration (at specification Level)	Area	Amount Added (ppm)	Amount Found (ppm)	% Recovery	Mean Recovery
50%	451144.3	25	24.998	99.992%	
100%	897248.3	50	50.104	100.208%	100.1873%
150%	1344562	75	75.278	100.362%	

Acceptance Criteria:

• The percentage recovery was found to be within the limit (98-102%).

The results obtained for recovery at 50%, 100%, 150% are within the limits. Hence method is accurate.

Table-: The accuracy Results for Lamivudine

%Concentration (at specification Level)	Area	Amount Added (ppm)	Amount Found (ppm)	% Recovery	Mean Recovery
50%	2895	15	15.084	100.560%	
100%	5685.333	30	30.282	100.940%	100.748%
150%	8449	45	45.335	100.744%	

Acceptance Criteria:

• The percentage recovery was found to be within the limit (98-102%).

The results obtained for recovery at 50%, 100%, 150% are within the limits. Hence method is accurate.

LIMIT OF DETECTION

The detection limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be detected but not necessarily quantitated as an exact value.

LOD=
$$3.3 \times \sigma / s$$

Where

σ = Standard	deviation	of the	response
---------------------	-----------	--------	----------

S = Slope of the calibration curve

Abacavir:

Result:

 $=2.6\mu g/ml$

Lamivudine:

Result:

 $=3.4\mu g/ml$

Quantitation limit

The quantitation limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be quantitatively determined.

$LOQ=10\times\sigma/S$

Where

 σ = Standard deviation of the response

S = Slope of the calibration curve

Abacavir:

Result:

 $=7.8\mu g/ml$

Lamivudine:

Result:

 $=\!\!10.2\mu g/ml$

ROBUSTNESS

Table-: Results for Robustness

Abacavir

Parameter used for sample analysis	Peak Area	Retention Time	Theoretical plates	Tailing factor
Actual Flow rate of 1.0mL/min	859856	3.297	7896	1.24
Less Flow rate of 0.9mL/min	915847	3.639	7251	1.20
More Flow rate of 1.1mL/min	842564	2.859	7415	1.21
Less organic phase (about 5 % decrease in organic phase)	825498	3.460	7365	1.23
More organic phase (about 5 % Increase in organic phase)	814578	3.022	7258	1.22

Acceptance Criteria:

The tailing factor should be less than 2.0 and the number of theoretical plates (N) should be more than 2000.

Table-: Results for Robustness

Lamivudine

Parameter used for sample analysis	Peak Area	Retention Time	Theoretical plates	Tailing factor
Actual Flow rate of 1.1mL/min	5698	5.405	6582	1.36
Less Flow rate of 0.9mL/min	6452	6.250	6785	1.32
More Flow rate of 0.8mL/min	5254	4.863	6365	1.34
Less organic phase (about 5 % decrease in organic phase)	5487	6.196	6254	1.38
More organic phase (about 5 % Increase in organic phase)	5369	5.010	6298	1.33

Acceptance Criteria:

The tailing factor should be less than 2.0 and the number of theoretical plates (N) should be more than 2000.

SUMMARY AND CONCLUSION

High performance liquid chromatography is at present one of the most sophisticated tool of the analysis. The estimation of Abacavir and Lamivudine was done by RP-HPLC.

The TEA buffer was p^H 4.8 and the mobile phase was optimized with consists of Methanol: TEA buffer mixed in the ratio of 32:68 % v/v.

A Phenomenex Gemini C18 (4.6mm \times 150mm, 5.0 μ m) particle size or equivalent chemically bonded to porous silica particles was used as stationary phase.

The solutions were chromatographed at a constant flow rate of 1.0 ml/min. The linearity range of Abacavir and Lamivudine were found to be from $30-70\mu g/ml$, $10-50\mu g/ml$ respectively. Linear regression coefficient was not more than 0.999, 0.999.

The values of % RSD are less than 2% indicating accuracy and precision of the method. The percentage recovery varies from 98-102% of Abacavir and Lamivudine. LOD and LOQ were found to be within limit.

The results obtained on the validation parameters met ICH and USP requirements. It inferred the method found to be simple, accurate, precise and linear.

The method was found to be having suitable application in routine laboratory analysis with high degree of accuracy and precision.

ACKNOWLEDGEMENT

The Authors are thankful to the Management and Principal, Princeton College of Pharmacy, Narapally, Ghatkesar, Telangana, for extending support to carry out the research work. Finally, the authors express their gratitude to the Sura Pharma Labs, Dilsukhnagar, Hyderabad, for providing research equipment and facilities.

REFERENCES

- 1. Meyer V.R. Practical High-Performance Liquid Chromatography, 4th Ed. England, John Wiley & Sons Ltd, (2004), PP 7-8.
- 2. Sahajwalla CG a new drug development, vol 141, Marcel Dekker Inc., New York, (2004), PP 421–426.
- 3. Introduction to Column. (Online), URL: http://amitpatel745.topcities.com/index files/study/column care.pdf
- 4. Detectors used in HPLC (online)URL:http://wiki.answers.com/Q/What detectors are used in HPLC
- 5. Detectors (online) ,URL:http://hplc.chem.shu.edu/NEW/HPLC Book/Detectors/det uvda.html
- 6. Dr.Kealey and P.J.Haines, Analytical Chemistry, 1stedition, Bios Publisher, (2002), PP:1-7.
- 7. A.BraithWait and F.J.Smith, Chromatographic Methods, 5thedition, Kluwer Academic Publisher, (1996), PP 1-2.
- Andrea Weston and Phyllisr. Brown, HPLC Principle and Practice, 1st edition, Academic press, (1997), PP 24-37.
- 9. Yuri Kazakevich and Rosario Lobrutto, HPLC for Pharmaceutical Scientists, 1stedition, Wiley Interscience A JohnWiley & Sons, Inc., Publication, (2007), PP 15-23.
- 10. Chromatography, (online). URL:http://en.wikipedia.org/wiki/Chromatography.
- 11. Draft ICH Guidelines on Validation of Analytical Procedures Definitions and terminology. Federal Register, vol 60. IFPMA, Switzerland, (1995), PP 1126.
- 12. Code Q2B, Validation of Analytical Procedures; Methodology. ICH Harmonized Tripartite Guidelines, Geneva, Switzerland, (1996), PP 1-8.
- 13. Introduction to analytical method validation (online), available from: URL: http://www.standardbase.hu/tech/HPLC%20validation%20PE.pdf.
- 14. Data elements required for assay validation, (online) available from: URL: http://www.labcompliance.com/tutorial/methods/default.aspx.
- 15. Snyder LR practical HPLC method development, 2nd edition. John Wiley and sons, New York, (1997), PP 180-182
- 16. Skoog D A, West D M, Holler FJ: Introduction of analytical chemistry. Sounder college of publishing, Harcourt Brace college publishers. (1994), PP 1-5.
- 17. Sharma B K, Instrumental method of chemical analysis Meerut. (1999), PP 175-203.
- 18. Willard, H. y. Merritt L.L, Dean J.A and Settle F.A "Instrumental methods of analysis" 7th edition CBS publisher and distributors, New Delhi, (1991), PP 436-439.
- 19.ICH Q2A, "validation of analytical methods, definitions and terminology", ICH Harmonized tripartite guideline, (1999).
- 20. https://go.drugbank.com/drugs/DB01048
- 21. https://en.wikipedia.org/wiki/Abacavir
- 22. https://en.wikipedia.org/wiki/Lamivudine
- 23. https://www.drugbank.ca/drugs/DB00709
- 24. Ahmed Serag, Mohamed A. Hasan, Enas H. Tolba, Ahmed M. Abdelzaher, Ayman Abo Elmaaty, Analysis of the ternary antiretroviral therapy dolutegravir, lamivudine and abacavir using UV spectrophotometry and chemometric tools, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Volume 264, 5 January 2022, 120334
- Srinivas Lella, P. Venkateswararao And N. Srinivasrao, A Stability Indicating Rp-Hplc Metods For Simultaneous Estimation Of The Abacavir, Lamivudine And Dolutegravir In Bulk And Pharmaceutical Dosage Form, INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY, 2019, 9(3), 146-153
- 26. Khaleel Noorbasha & Sharmila Nurbhasha, A new validated stability-indicating RP-HPLC method for simultaneous quantification of dolutegravir and lamivudine in bulk and pharmaceutical dosage form, Future Journal of Pharmaceutical Sciences volume 6, Article number: 39 (2020)
- 27. Sufiyan Ahmad Raees Ahmad,1 Lalit Patil,1 Mohammed Rageeb Mohammed Usman,2 Mohammad Imran,3 and Rashid Akhtar, Analytical Method Development and Validation for the Simultaneous Estimation of Abacavir and Lamivudine by Reversed-phase High-performance Liquid Chromatography in Bulk and Tablet Dosage Forms, Pharmacognosy Res. 2018 Jan-Mar; 10(1): 92–97.
- 28. Rajkumar Prava, Ganapathy Seru, Vamsi Krishna Pujala, RP-HPLC method development and validation for the simultaneous determination of lamivudine, abacavir and dolutegravir in pharmaceutical dosage forms, World Journal of Pharmaceutical Sciences, 26-04-2017.