

INTERNATIONAL JOURNAL OF PHARMACY AND ANALYTICAL RESEARCH

IJPAR |Vol.7 | Issue 4 | Oct - Dec -2018 Journal Home page: www.ijpar.com

Research article

Open Access

ISSN:2320-2831

Analytical method development and validation of plerixafor in its dosage form in the presence of tetra-aza-cyclotetra decane derivatives by HPLC

Tasneem Fatima^{*}, Imam Pasha.S, Murali BalaramVaranasi, Anupama Koneru, M.Mushraff Ali Khan

Sultan -Ul-Uloom college of Pharmacy, Banjara Hills, Road No.3, Hyderabad-500 034, Telangana, India. *Corresponding Author: Tasneem Fatima Email: tasneemfatima209@gmail.com

ABSTRACT

A simple and selective HPLC method is described for the determination of plerixafor Chromatographic separation was achieved on a Zorbax eclipse C_{18} 250x4.6mmx5 micron using mobile phase consisting Water: Methanol: Acetonitrile in the ratio 40:35:25v/v with detection wavelength of 221 nm. Linearity was observed in the range 50-125 µg /ml For Plerixafor (r² =0.9964) for the amount of drugs estimated by the proposed methods was in good agreement with the label claim. The proposed method is fully validated with parameters like accuracy, precision, linearity, limit of detection, limit of quantification, robustness and ruggedness. The proposed method is stability indicating with parameters like acid base peroxide, photolytic and thermal degradation. No interference found from all three impurities of Plerixafor that is tetraazacyclotetradecane derivatives.

Keywords: Plerixafor, HPLC method, Quantification, Formulation, Related substances

INTRODUCTION

In the pharmaceutical-world, an impurity is defined as any other inorganic or organic material, or residual solvents other than the drug substances, or ingredients, arise out of synthesis or unwanted chemicals that remains with APIs. Now a days, not only purity profile but also impurity profile has become mandatory according to various regulatory authorities. Very few methods were reported for estimation of plerixafor in the presence of impurities A, B, C in the injection formulation. in the presence of impurities A, B, C in the injection formulation.

Plerixafor (PRX) belongs to the class anticancer drug.Plerixafor consists of two cyclam rings with a phenylenebis (methylene) linker [1, 2]. It inhibits CXCL12 binding to CXCR4 and subsequent downstream events including chemotaxis [3, 4]. The molecular interactions of plerixafor had been defined as a unique binding mode to CXCR4. Plerixafor rapidly mobilizes Hematopoietic Stem Cell within hours compared with the multi-day treatment required by Granulocyte-Colony Stimulating Factor in mouse, dog and non-human primate. The mobilized cells once transplanted are capable of timely and endurable engraftment [5, 6]. Plerixafor is a hematopoietic stem cell mobilizer. It is used to stimulate the release of stem cells from the bone marrow into the blood in patients with non-Hodgkin lymphoma and multiple myeloma for the purpose of stimulating the immune system. These stem cells are then collected and used in autologous stem cell transplantation to replace blood-forming cells that were destroyed by chemotherapy [7].

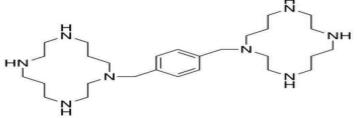


Fig 1. Structure of Plerixafor 1,1'-[1,4-phenylenebis(methylene)]-bis—1,4,8,11-tetraazacyclotetradecane

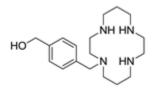


Fig 2: Impurity A

Benzenemethanol, 4-(1,4,8,11-tetraazacyclotetrade-1-ylmethyl)-(4-((1,4,8,11-tetraazacyclotetradecan-1-yl)methyl)) (4-((1,4,8,11-tetraazacyclotetradecan-1-yl)methyl)) (4-(1,4,8,11-tetraazacyclotetradecan-1-yl)methyl)) (4-(1,4,8,11-tetraaz

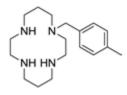


Fig 3: Impurity B 1-(4-methylbenzyl)-1,4,8,11-tetraazacyclotetradecane

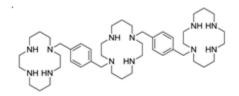


Fig 4: Impurity C

1, 8-bis (4-((1,4,8,11-tetraazacyclotetradecane-1-yl) methyl) benzyl) - 1, 4, 8, 11-tetraazacyclotetradecane-1-yl) methyl benzyl - 1, 4, 8, 11-tetraazacyclotetradecane-1-yl) methyl benzyl - 1, 4, 8, 11-tetraazacyclotetradecane-1-yl - 1, 4, 8, 11-tetraazacyclotetradecane

REQUIREMENTS

Table 1: Equipment's		
Instrument	Instrument/Column Id	
HPLC	Zorbax eclipse C ₁₈ 250x4.6mmx5 micron column, PD detector	
Analytical balance	Sartorius Practum	
P ^H meter	Digisun model DI-707	
Sonicator	Labotec	

Table 2. Chemicals		
Name	Grade	
Plerixafor	USP-Grade	
Water	HPLC grade	
Methanol	AR grade	
Acetonitrile	HPLC grade	
Plerixafor Brand Names	Celrixafor, Mozobil, Mozifor	

METHODOLOGY [8]

Mobile Phase

Take 350ml (35%) of Methanol, 400ml of Water & 250ml of Acetonitrile were mixe-degasse & filtered-through 0.45μ -filter under vacuum-filtration.

Preparation of Standard Stock Solution

100mg of Plerixafor into 100ml-volumetric flasks & add 60ml of diluent & sonicate, make upthe volume with mobile phase. Pipette-out 0.3ml of above Plerixafor-stock into 10ml-vol flask & make up the volume.

Preparation of Sample Solution

Weight equivalent to 100mg of Plerixafer injection is taken same procedure is followed as that of Std.

Preparation of Stock A, B, C

Take 1mg of impurities A, B, C (Stds) into respective labelled vol. flask (10ml) & dilute to volume. Transfer 1 mL of this solution into a 10 mL volumetric flask & dilute to the volume.

Standard solution

To 1mL of standard stock solution, stock A, B, C into a 10 mL vol. flask individually & makeup the volume.

Assay method

As per the method parameters indicated in Biophore DMF of Plerixafor, Blank (diluent), Placebo, Mobile phase, Impurity A, Impurity B, Impurity C, standard and sample solutions were injected using Zorbax eclipse C_{18} 250 x 4.6mm x 5µ column to check interference with the principal peak.

RESULTS & DISCUSSION

Table 5.Optimized Unromatographic Conditions		
Column	Zorbax eclipse C ₁₈ 250x4.6mmx5 micron	
Flow rate	1.5 ml/min	
Mobile Phase	Water:Methanol:ACN=40:35:25	
Wavelength	221nm	
Inj-volume	20 microlitre	
Temperature	Ambient	
Runtime	20 minutes	

Table 3 Ontimized Chromotographic Conditions

Table 4. Specificity check			
Condition	Observation in Assay method		
Diluent	No interference observed		
Mobile phase	No interference observed		
Placebo	No interference observed		
Impurity A	No interference observed		
Impurity B	No interference observed		
Impurity C	No interference observed		

Lev	ereoneentration (ing/in	L) III of uge I cus III cu
50	0.2010	2606411
75	0.3015	3907659
100	0.4020	5194537
125	0.5025	6385743
-		

 Table 5.Linearity has been performed from 50% to 125% on working concentration.

 ~LevelConcentration (mg/mL)Average Peak Area

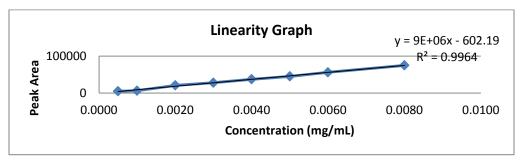
PRECISION STUDY

Inj.No.	Retention time of Plerixafor	Peak area of Plerixafor	Tailing Factor
1	14.176	4877849	1.84
2	14.175	4868191	1.85
3	14.182	4856044	1.82
4	14.189	4880706	1.85
5	14.189	4869394	1.85
Avg.	14.188	4869288	1.8
% RSD	0.10	0.2	

Table 7. Method Precision (Repeatability)

Method precision was performed for 6 different preparations

Solution ID	Conc. mg/mL	Peak area	% of Plerixafor
Preparation 1	0.40	5347337	101.2
Preparation 2	0.40	5359411	101.4
Preparation 3	0.40	5382425	101.8
Preparation 4	0.40	5389279	102.0
Preparation 5	0.40	5396820	102.1
Preparation 6	0.40	5393126	102.0
Average			101.8
Std Deviation			0.38
% of RSD			0.39


RELATED SUBSTANCES

As per the method parameters indicated in the Biophore DMF of Plerixafor, Blank (diluent), Placebo, Mobile phase, Impurity A, Impurity B, Impurity C, reference standard and sample solutions were injected using Zorbax eclipse C_{18} 250 x 4.6mm x 5 μ column and flow rate of 1.5mL/minute to check interference with principal peak. Chromatograms were presented in Annexure-I.

Table 8. Specificity checkConditionObservation in RS MethodDiluentNo interference observed

Mobile phase	No interference observed
Placebo	No interference observed
Impurity A	No interference observed
Impurity B	No interference observed
Impurity C	No interference observed

Level	Concentration (mg/mL)Average Peak Area		
12.5 (LC	Q)0.0005	4666	
25	0.0010	6295	
50	0.0020	20710	
75	0.0030	27965	
100	0.004	37279	
125	0.0050	44922	
150	0.0060	56825	
200	0.0080	74165	

Fig 5: Linearity

Table 10. LOD & LOQ Solution			
Parameters	Concentration	% on working concentration	S/N
	(mg/mL)		
LOD	0.0002	0.01	2.9
LOQ	0.0005	0.025	9.1

Stress testing

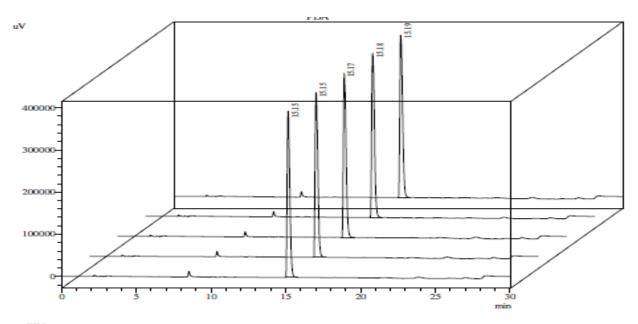
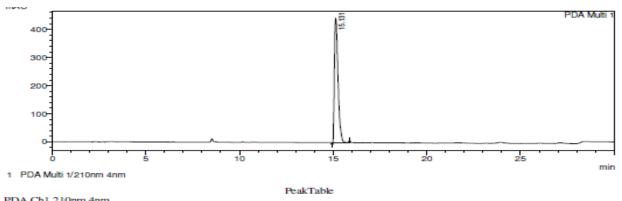
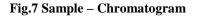

Plerixafor Injection sample was subjected to forcible conditions (Acid, base, and peroxide) and injected into assay and related substances methods to establish the stability indicating capability of the method. Chromatograms were presented in Annexure-I.

Table 11. Forced degradation study								
Condition	Time period	% Assay	Peak purity Index	Peak purity threshold	% Total Impurities	Mass balance		
1N Acid at 60°C	72hrs	99.7	1.00000	0.99994	0.20	100.0		
2N NaOH at 60°C	72hrs	97.1	1.00000	0.99994	1.80	98.9		
3% Peroxide at 60°C	72hrs	97.8	1.00000	0.99994	3.00	100.8		

Parameters	Acceptance criteria	Result	
Specificity	Mobile phase, Placebo and diluent should not show any	No interference	
	interference with the main peak.	observed	
Linearity (50% to 125%) Assay	Correlation coefficient, R, NLT 0.99	0.999	
Linearity (LOQ to 200%) RS	Correlation coefficient, R, NLT 0.99	0.996	
System precision	Tailing factor : NMT 2.0	1.8	
	The % RSD for area : NMT 2.0	0.2	
Method precision	% RSD for area: NMT 2.0%	0.39	
LOD	S/N ratio around 3	2.9	
LOQ	S/N ratio around 10	9.1	

Table 12. Summary.


Based on the chromatographic profile obtained from the study, assay and related substance method is specific, linear and precise and can be used to analyze Plerixafor and its degradation products in Plerixafor injection.


<< PDA >> ID#1 Compound Name: PR

	-						
Via#	Sample Name	Sample ID	Title	Ret. Time	Area	Theoretical Plate#	Tailing Factor
2	APR	Standard Solution	23062017_APR_019.kd	15.19	4894084	30902.028	1.613
2			23062017_APR_020.led		4882804	31581,812	1.627
2	APR	Standard Solution	23062017_APR_021.kd	15.17	4877111	31622.862	1.627
2	APR	Standard Solution	23062017_APR_022.kd	15.15	4873326	31568.309	1.629
2	APR	Standard Solution	23062017_APR_023.lcd	15.15	4880847	32070.808	1.635
			Average	15.17	4881634	31549.164	1.626
			%RSD	0.11	0.16	1.32	0.51

Fig 6: Standard – Chromatogram

r DA CIII	2100001-4000					
Peak#	Name	Ret, Time	Area	Area %	Peak Purity Index	Single Point Threshold
1	PR	15.131	5945548	100,00	1.00000	0.99994
Total			5945548	100,00		

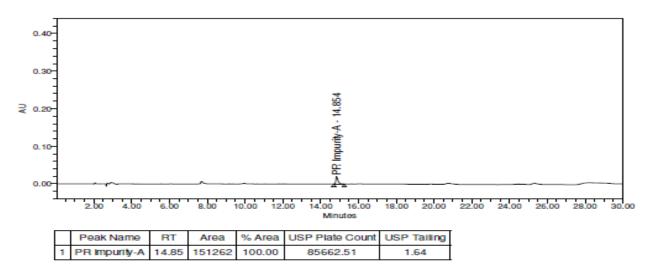
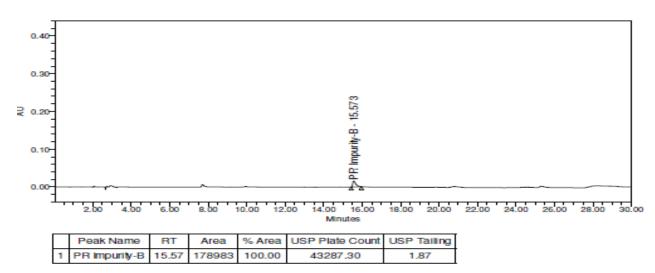
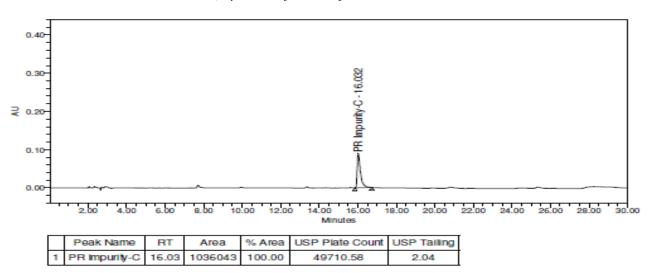




Fig. 8 Impurity A – Chromatogram

Fig.9 Impurity B – Chromatogram

Tasneem F et al / Int. J. of Pharmacy and Analytical Research Vol-7(4) 2018 [543-557]

Fig.10 Impurity C – Chromatogram

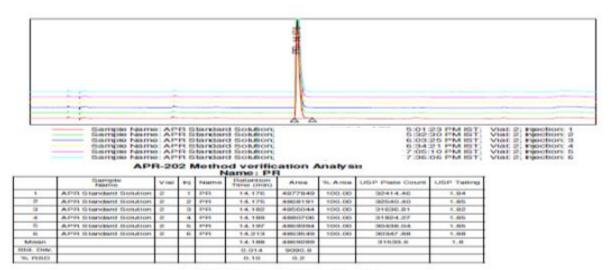
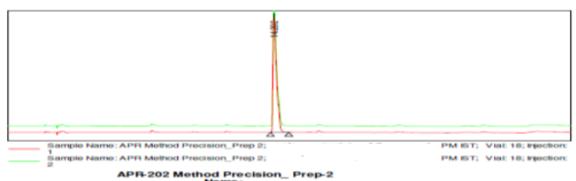
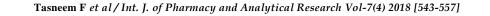




Fig.11 Assay - System Precision

Name :								
	Sample Name	Vial	mj	Retention Time (min)	Area	% Area	USP Plate Count	USP Tailing
	APR Method Precision_Prep 2	10	1	14.202	5360446	100.00	27013.95	1.04
12	APR Method Precision_Prep 2	18	1	14.211	5358376	100.00	27776.80	1.93
Mount				14.207	5359411		27395.4	1.9
Btd. Dov.				0.007	1464.1			
96 F8BD				0.05	0.0			

Fig.12 Assay – Method Precision

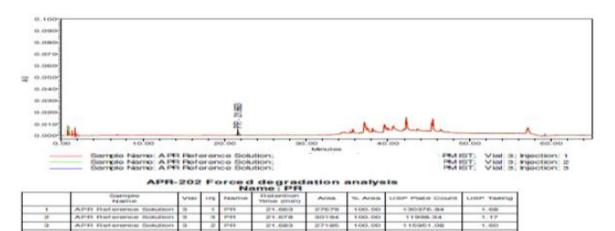


Fig.13 Reference standard - Chromatogram (Specificity)

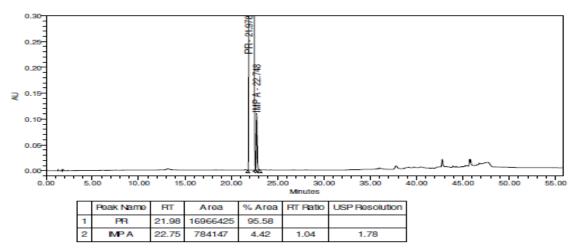
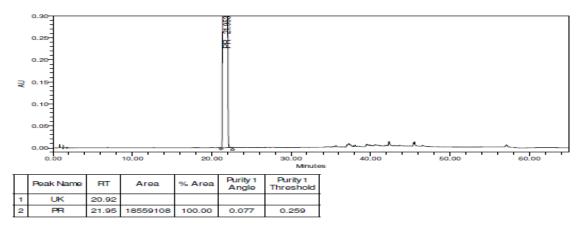
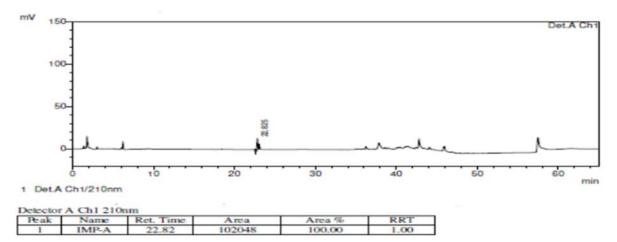
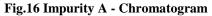
1010.0

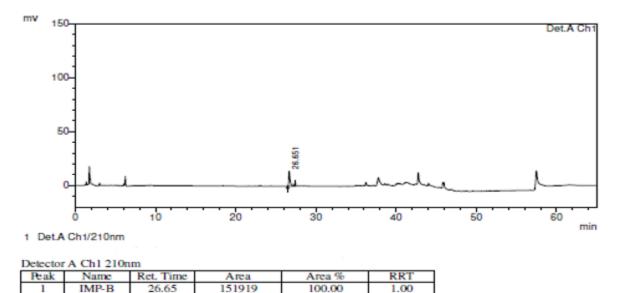
1045 1 CHR. 84

10.0.00

0.010

163. Dier 16. Phillip


Fig.14 .System suitability solution - Chromatogram

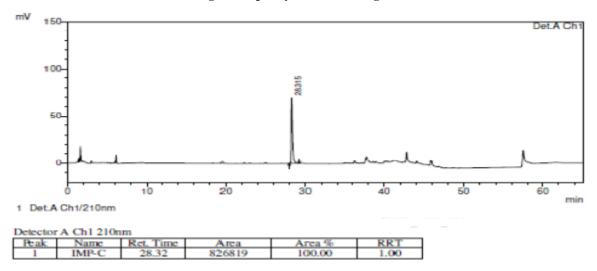

Fig.15 Sample – Chromatogram

Fig: 17 Impurity B - Chromatogram

Fig: 18 Impurity C - Chromatogram

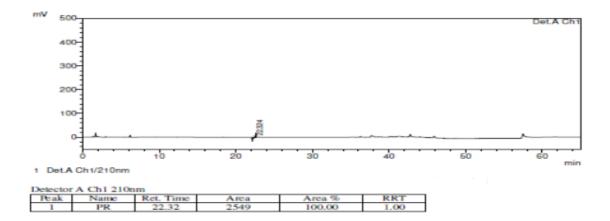


Fig: 19 LOD solution - chromatogram

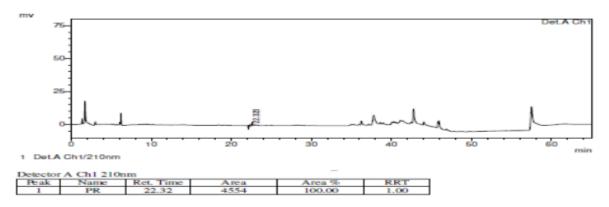
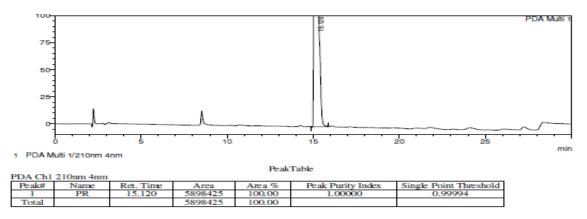
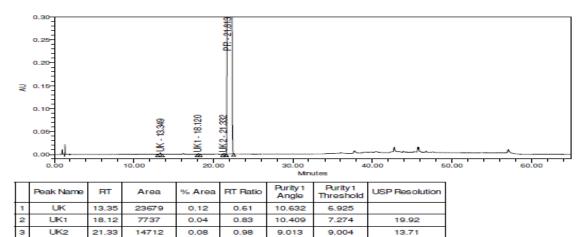




Fig: 20 LOQ solution- chromatogram

Acid degradation at 72Hrs Assay

Fig.21 Forced Degradation - Chromatograms

0.086 Fig.22 Sample - Acid degradation at 72HrsRS

0.256

0.99

PB

21.81

19262166

99.76

4

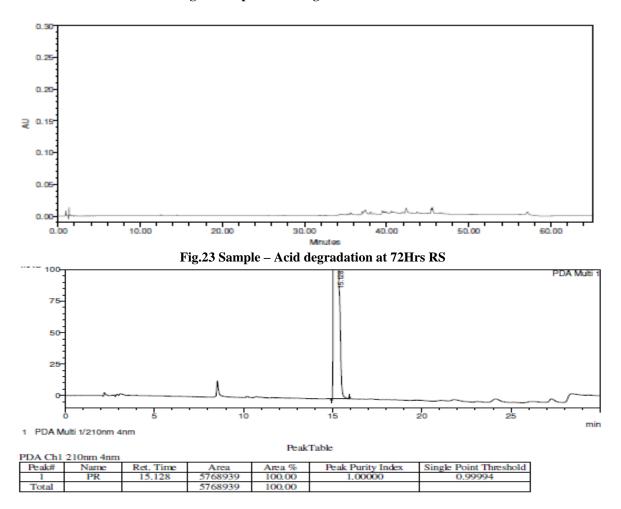


Fig.24 Base degradation at 72Hrs Assay

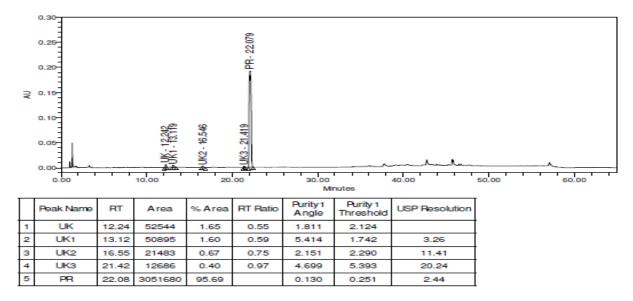
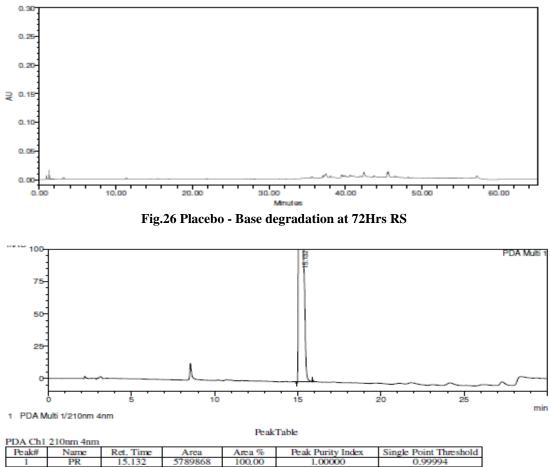



Fig.25 Sample - Base degradation at 72Hrs RS

 I
 PR
 15.132
 5789868
 100.00
 1.00000
 0.99994

 Total
 5789868
 100.00
 1.00000
 0.99994

Fig.27 Sample - Peroxide degradation at 72Hrs RS

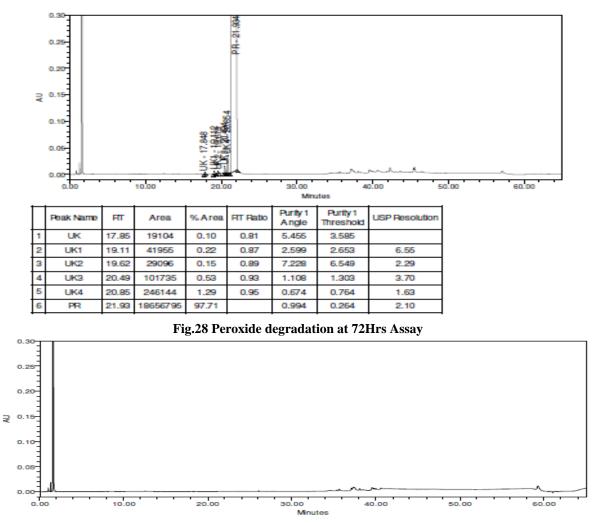


Fig.29 Placebo - Peroxide degradation at 72Hrs RS

Table	: 13	Summary
-------	------	---------

Parameters	Acceptance Criteria	Result
Specificity	Mobile phase, placebo and diluents should not show any	No interference
	interference with the main peak.	observes
Linearity (50% to 125%)	R ² , NLT 0.99	0.999
Assay		
Linearity (LOQ to	R ² , NLT 0.99	0.996
200%) RS		
System precision	Tailing factor:NMT 2.0	1.8
	The % RSD for area:NMT 2.0	0.2
Method precision	%RSD for area:NMT 2.0%	0.39
LOD	S/N ratio around 3	2.9

CONCLUSION

Based on the chromatographic profile obtained from the study, assay and related substance method is specific, linear and precise and can be used to analyze Plerixafor and its degradation products in Plerixafor injection.

Acknowledgement

The authors gratefully acknowledge Enal drugs Pvt Limited, Hyderabad, Telangana, India for providing necessary facilities to carry out this work.

REFERENCES

- [1]. Olivieri A, Marchetti M, Lemoli R, et al. on behalf of the Italian Group for Stem Cell Transplantation Proposed definition of "poor mobilizer" in lymphoma and multiple myeloma: an analytic hierarchy process by ad hoc working group Gruppo ItalianoTrapianto di Midollo Osseo. Bone Marrow Transplant. 47, 2012, 342–51.
- [2]. Wagstaff, A. J. "Plerixafor: in patients with non-Hodgkin's lymphoma or multiple myeloma". Drugs.. 69(3), 2009, 319–26.
- [3]. Uy GL,Rettig,CashenAF, Plerixafor, a CXCR4 antagonist for the mobilisation of haemopoetic stem cells, Expert opin Biol Ther,S 11, 2008 1797-1804.
- [4]. Stewart DA, Smith,C, MacfarlandC, calendraG, pharmacokinetics and pharmacodynamics of plerixafor in patients with Blood marrow Transplant,15(1), 2009, 39-46.
- [5]. Rosenkilde, M. M., Gerlach, L. O., Jakobsen, J. S., Skerlj, R. T., Bridger, G. J., & Schwartz, T. W.(2004, January 23). Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor. *Journal of Biological Chemistry*, 279, 3033–3041.
- [6]. Choi HY, Yong CS, Yoo BK. Plerixafor for stem cell mobilization in patients with non-Hodgkins lymphoma and multiple myeloma. Ann Pharmacother., 44(1), 2010, 117-126.
- [7]. Fricker SP. A novel CXCR4 antagonist for hematopoietic stem cell mobilization. Expert Opin Investig Drugs., 17(11), 2008, 1749-1760.
- [8]. Mathrusri Annapurna, M., Sai Pavan Kumar, B., Goutam, S. V. S., & Venkatesh, B. Stability-indicating high performance liquid chromatographic and derivative spectrophotometric methods for Plerixafor. *Drug Invention Today*, *4*, 2012, 465–469.