

INTERNATIONAL JOURNAL OF PHARMACY AND ANALYTICAL RESEARCH

ISSN:2320-2831

IJPAR |Vol.8 | Issue 3 | Jul - Sep - 2019 Journal Home page: www.ijpar.com

Research article

Open Access

RP-HPLC stability indicating assay and simultaneous estimation method for the combination of Glecapravir and Pibrentasvir in tablet dosage form

Mohammed Junaid Ahmed*, Dr.K.Pavan Kumar¹

Department of Pharmaceutical Analysis & Quality Assurance, Shadan College of Pharmacy, **Chevella** Rd, Bandlaguda, Anand Nagar Colony, Rajendranagar mandal, Hyderabad, Telangana 500086

*Corresponding Author: Mohammed Junaid Ahmed Email: mohammedjunaidahmed81@gmail.com

ABSTRACT

Glecaprevir & Pibrentasvir are directly acting antiviral agents and Hepatitis C virus (HCV) protease inhibitors which targets on viral RNA replication. The main objective of the present work is to determine a simple, precise, accurate RP-HPLC method. In RP-HPLC, the method was developed using Waters Alliance 2695 separation module with PDA detector, Altima 5μ C18 column 4.6×150 mm & Empower Software. The mobile phase used was Methanol: TEA Buffer pH 4.5: Acetonitrile (50:35:15) at a flow rate of 1ml/min. The method was validated for System Suitability, Specificity, Linearity, Accuracy, Precision, Robustness & Forced Degradation Studies (Acidic, Basic, Oxidative). The %RSD was found to be <2.0% and all the other validation parameters were found to be within the limits. This method can be used for the routine determination of Glecaprevir and Pibrentasvir in bulk drug and in Pharmaceutical dosage forms.

Keywords: RP-HPLC, Glecaprevir, Pibrentasvir, Method Development, Validation.

INTRODUCTION

A drug incorporates all medications expecting for internal or external utilize for or within the conclusion, treatment, moderation or anticipation of infection or clutter in human creatures or other creatures, and fabricated only in agreement with the formulae specified in definitive books.¹

DRUG PROFILE

Glecaprevir

Glecaprevir is a directly acting antiviral agent and HCV NS3/4A protease inhibitor it targets the viral RNA replication. In combination with Pibrentasvir, it is used to treat patients who experienced therapeutic failure from other NS3/4A protease inhibitors. It forms a high genetic barrier against resistance mutations of the virus.

Chemical Structure

Pibrentasvir

Pibrentasvir is a directly acting antiviral agent and HCV NS5A inhibitor, it targets the viral RNA replication and viron assembly. In combination with Glecaprevir, it is used to treat patients who experienced therapeutic failure from other NS5A inhibitors Pibrentasvir along with Glecaprevir is available as an oral combination therapy under the brand name Mavyret. This FDA-approved combination is used to treat adults with chronic hepatitis C virus (HCV) genotypes 1-6 without cirrhosis (liver disease) or with mild cirrhosis, including patients with moderate to severe kidney disease and those who are on dialysis ^[3].

Chemical Structure

Aim

Development of new simultaneous RP-HPLC method for the estimation of Glecapravir and Pibrentasvir in tablet dosage form and then validation of the method.

Plan of work

Glecapravir and Pibrentasvir are existing drugs. Literature reveals different methods for their analysis in their formulations. But our present plan is to develop a new, simple, precise& accurate method for its analysis in formulation after a detailed study a new RP-HPLC method was decided to be developed and validated.

Following are the objectives of present work:

- To develop analytical method
- > To validate different parameters.
- Performing Stability Indicating Assay

MATERIAL AND METHOD

The drug samples Glecapravir and Pibrentasvir were obtained from Sura Labs., Hyderabad. The solvents used were of HPLC grade methanol and water from Merck Co, Mumbai.

Instrumentation

The HPLC system used was WATERS Alliance 2695 separation module, software: Empower 2, 996 PDA detector, Altima C18 (4.6×150 mm, 5μ) column.

EXPERIMENTAL WORK

HPLC method development

Trails

Preparation of standard solution

Accurately weigh and transfer 10 mg of Glecaprevir and Pibrentasvir standards into 10ml volumetric flasks, then add about 7ml of Methanol. Sonicate it and makeup the volume with Methanol.

Further pipette out 0.45ml of the above Glecaprevir and 1.12ml of the Pibrentasvir stock solutions into a 10ml volumetric flask and dilute it with Methanol.

Procedure

Inject the samples and record the chromatograms, note the conditions of peak elution for performing validation parameters as per ICH guidelines.

Mobile Phase Optimization

Initially the mobile phase used was Methanol: Water and Water: Acetonitrile and Methanol: TEA Buffer: ACN with varying proportions. Finally, the mobile phase was optimized to Methanol: TEA Buffer: ACN in proportion 50:35:15 v/v respectively.

Optimization of Column

The method was performed with various columns like C18 column, Symmetry and Zodiac column. Altima C18 $(4.6 \times 150 \text{ mm}, 5\mu)$ was found to be ideal as it gave good peak shape and resolution at 1ml/min flow.

VALIDATION

Preparation Of Buffer And Mobile Phase

Preparation of Triethylamine (TEA) buffer (pH-4.5)

Dissolve 1.5ml of Triethyl amine in 250 ml water and adjust the p^{H} to 4.5. Filter and sonicate the solution by vaccum filtration and ultrasonication.

Preparation of mobile phase:

Accurately measured 400 ml (40%) of Methanol, 200 ml of Triethylamine buffer (20%) and 400 ml of Acetonitrile (40%) were mixed and degassed for 10 minutes and then filtered.

Diluent Preparation:

The Mobile phase was used as the diluent.

Optimised Chromatographic Conditions-(Standard)

 Mobile phase
 : Methanol: TEA Buffer pH 4.5:

 Acetonitrile (50:35:15)
 Column

 Column
 : Altima C18 (4.6×150mm, 5.0 µm)

 Flow rate
 : 1 ml/min

Wavelength : 225 nm

Column temp	: 40°C
Injection Vol	: 10 µl
Run time	: 7 minutes

VALIDATION PARAMETERS

System Suitability

Accurately weigh and transfer 10 mg of standards into 10ml volumetric flasks add about 7mL of Diluents, sonicate it and make up the volume with the same solvent. Further pipette out 0.45ml of the above stock solutions into a 10ml volumetric flask and dilute it up to the mark with Diluent.

Linearity

From the standard stock solution aliquots are prepared and injected into chromatographic system and the peak area is determined. A graph is plotted and the correlation coefficient is calculated.

Precision

Repeatability communicates the exactness beneath the same working conditions over a brief interim of time. Repeatability is additionally named intra –assay exactness.

RESULTS & DISCUSSIONS

- Intermediate Precision communicates varieties inside research facilities, such as distinctive days, distinctive investigators, distinctive hardware, and so forward.
- **Reproducibility** communicates the exactness between research facilities

Accuracy

Accuracy at different concentrations (50%, 100%, and 150%) were prepared and the % recovery was calculated.

RESULTS & DISCUSSIONS

Optimized Chromatogram

Peak results for Optimized Chromatogram

Peak Name	R _t	Area	USP Tailing	USP plate count
Glecaprevir	2.102	4496421	0.96	5586.0
Pibrentasvir	3.537	5206219	1.22	5371.0

S.No	Name	Rt	Area	USP plate count	USP Tailing
1	Glecaprevir	2.117	4496832	5641	1.9
2	Glecaprevir	2.118	4498657	5423	1.6
3	Glecaprevir	2.116	4500136	5143	1.6
4	Glecaprevir	2.109	4527238	5212	1.7
5	Glecaprevir	2.102	4543296	5419	1.6
Mean			4513231.8		
Std. Dev			20933.87		
% RSD			0.46%		

Results of system suitability for Glecaprevir

Results of system suitability for Pibrentasvir

S.No	Name	Rt	Area	USP plate count	USP Tailing	USP Resolution
1	Pibrentasvir	3.547	5204132	5031	1.2	2.07
2	Pibrentasvir	3.539	5222196	5435	1.4	2.05
3	Pibrentasvir	3.547	5242453	5983	1.5	2.0
4	Pibrentasvir	3.565	5263351	5849	1.6	2.01
5	Pibrentasvir	3.537	5282365	5378	1.6	2.01
Mean			5242899.4			
Std. Dev			31255.17			
% RSD			0.60%			

CHROMATOGRAPHIC DATA FOR LINEARITY STUDY

Glecaprevir

Concentration Level (%)	Concentration µg/ml	Peak Area
1	15	205215
2	30	383527
3	45	563342
4	60	742347
5	75	911897

Pibrentasvir

Concentration Level (%)	Concentration µg/ml	Average Peak Area
1	15	266324
2	30	408535
3	45	572957
4	60	736528
5	75	922934

Results Of Repeatability For Glecaprevir

S. No	Name	Rt	Area	USP plate count	USP Tailing
1	Glecaprevir	2.108	4465236	2586	1.6
2	Glecaprevir	2.105	4465483	2947	1.4
3	Glecaprevir	2.113	4465691	2468	1.6
4	Glecaprevir	2.109	4465838	2146	1.9
5	Glecaprevir	2.109	4466002	2307	1.7
Mean			4465650.0		
Std. Dev			300.08		
% RSD			0.01%		

Results Of Repeatability For Pibrentasvir

S. No	Name	Rt	Area	USP plate count	USP Tailing
1	Pibrentasvir	3.552	5206036	1.6	2371
2	Pibrentasvir	3.550	5206285	1.6	2841
3	Pibrentasvir	3.564	5206423	1.5	2816
4	Pibrentasvir	3.564	5206634	1.5	2872
5	Pibrentasvir	3.565	5206826	1.6	2845
Mean			5206440.8	1.6	2841
Std. Dev			305.84		
% RSD			0.01%		

%Concentration	Area	Amount Added	Amount Found	% Recovery	Mean Recovery
(at specification Level)		(ppm)	(ppm)		
50%	4496446	22.5	22.5	100	99.6%
100%	4632482	45	44.8	98.6	
150%	4835724	67.5	67.42	99.5	

The accuracy results for Glecaprevir

The accuracy results for Pibrentasvir

%Concentration	Area	Amount Added	Amount Found	% Recovery	Mean Recovery
(at specification Level)		(ppm)	(ppm)		
50%	5206229	56.25	56.249	100%	100%
100%	5406587	112.5	112.48	99.9%	
150%	5606354	168.75	168.75	100%	

Accuracy 50%

Chromatogram showing Accuracy-50% injection-1

Accuracy 100%

Chromatogram showing Accuracy-100% injection-1

Chromatogram showing Accuracy-150% injection-1

Results for Robustness

Glecaprevir

Parameter used for sample analysis	Peak Area	Retention Time	Theoretical plates	Tailing factor
Actual Flow rate of 1.0 mL/min	4834327	2.102	5586	1.7
Less Flow rate of 0.9 mL/min	4834212	2.330	5231	1.7
More Flow rate of 1.1 mL/min	4835347	1.950	5234	1.7
Less organic phase	4835938	2.290	5643	1.4
More organic phase	4836352	1.998	5298	1.5

Pibrentasvir

Parameter used for sample analysis	Peak Area	Retention Time	Theoretical plates	Tailing factor
Actual Flow rate of 1.0 mL/min	5606275	3.537	5371	1.6
Less Flow rate of 0.9 mL/min	5605926	3.885	5324	1.7
More Flow rate of 1.1 mL/min	5606562	3.263	5098	1.7
Less organic phase	5606126	4.435	5239	1.2
More organic phase	5606643	3.009	5647	1.0

EVALUATION OF METHOD

Forced Degradation Studies

Acidic Degradation

Analysis

Conditions	Sample Amount	Peak Area	% claim	%
	(µg/ml)			Degradation
Sample Control	05.03	5606126	99.39%	-
Acidic Degradation	04.79	5512345	97.73%	1.66%
Basic Degradation	04.92	5534338	98.12%	1.27%
Oxidative Degradation	05.38	5452326	96.66%	2.73%
Photolytic	05.41	5329451	94.48%	4.91%

CONCLUSION

The estimation of Glecaprevir and Pibrentasvir done by RP-HPLC. In the present was investigation, a simple, sensitive, precise and accurate RP-HPLC method was developed for the quantitative estimation of Glecaprevir and Pibrentasvir in bulk drug and pharmaceutical dosage This method was simple, since diluted forms. samples are directly used without any preliminary chemical derivatisation or purification steps. Glecaprevir and Pibrentasvir was freely soluble in ethanol, methanol and sparingly soluble in water.

Methanol: TEA Buffer pH 4.5: Acetonitrile (50:35:15) was chosen as the mobile phase. The solvent system used in this method was economical. The %RSD values were within 2 and the method was found to be precise. The results expressed in Tables for RP-HPLC method was promising. The RP-HPLC method is more sensitive, accurate and precise compared to the Spectrophotometric methods. This method can be used for the routine determination of Glecaprevir and Pibrentasvir in bulk drug and in Pharmaceutical dosage forms.

BIBLIOGRAPHY

- [1]. A Practical Guide to HPLC Detection, Academic Press, San Diego, CA 1983.
- [2]. Poole CF, Schutte SA. Contemporary Practice of Chromatography, Elsevier, Amsterdam, 375, 1984.
- [3]. Krull IS. In Chromatography and Separation Chemistry: Advances and Developments, Ahuja S. ed., ACS Symposium Series 297, ACS, Washington, DC, 137, 1986.
- [4]. Li G, Szulc ME, Fischer DH, Krull IS. In Electrochemical Detection in Liquid Chromatography and Capillary Electrophoresis, Kissinger PT. edn., Chromatography Science Series, Marcel Dekker, New York, 1997.
- [5]. Kissinger PT, Heineman WR. eds., Laboratory Techniques in Electroanalytical Chemistry, Marcel Dekker, New York, 20, 1984.
- [6]. Swarbrick JC, Boylan James, Encyclopedia of pharmaceutical technology, 1, 1998, 217-224.
- [7]. Lindsay Sandy, HPLC by open learning, 1991, 30-45.
- [8]. Lough WJ, Wainer IWW. HPLC fundamental principles and practices, 1991, 52-67.

- [9]. Krstulovic AM, Brown PR. Reversed-Phase High Performance Liquid Chromatography: Theory, Practice and Biomedical Applications, Wiley, New York, 1982.
- [10]. U.S. FDA, Title 21 of the U.S. Code of Federal Regulations: 21 CFR 211- Current good manufacturing practice for finished pharmaceuticals.