

INTERNATIONAL JOURNAL OF PHARMACY AND ANALYTICAL RESEARCH

ISSN: 2320-2831

IJPAR |Vol.11 | Issue 2 | Apr - Jun -2022 Journal Home page: www.ijpar.com

Research article

Open Access

ANALYTICAL METHOD DEVELOPMENT FOR THE ESTIMATION OF ANTIHYPERTENSIVE DRUG (OLMESARTAN) BY RP-HPLC METHOD

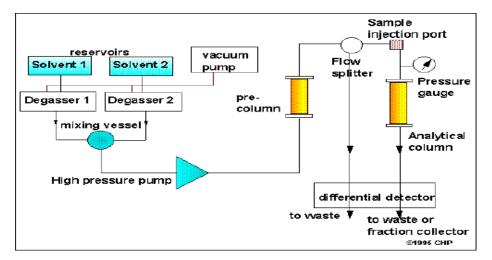
*Samreen Begum, *H. Parameshwar, *A.V. Jithan

*Omega College of Pharmacy, Edulabad, Ghatkesar, Osmania University, Hyderabad, Telangana, India

Corresponding Author: Dr. H. Parameshwar parampharma@gmail.com Email: Samreenmoinuddin000@gmail.com

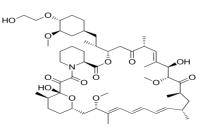
ABSTRACT

A sensitive and selective RP-HPLC method has been developed and validated for the determination of Olmesartan in pure form and Pharmaceutical dosage form. The Retention time of Olmesartan was found to be 3.544minutes. The Percentage Standard Deviation (%RSD) of the Olmesartan was and found to be 1.63%. The detector response was linear in the concentration range of 0.16μ g/ml. The respective linear regression equation being Y= 58945.x + 9634 with R2 = 0.999. The percentage recovery values of Olmesartan in pharmaceutical dosage form were found to be within the limits. The limit of detection and the limit of quantification for Olmesartan were found to be 0.90μ g/ml and 2.90μ g/ml respectively. Further the proposed RP-HPLC method has excellent sensitivity, precision and reproducibility, accuracy. The result shows the developed method is yet another suitable method for assay, purity which can help in the analysis of Olmesartan in different marketed formulations. The developed method was validated as per ICH guidelines for accuracy calculated as % recovery was in the range of 98.0% to 102.0%. The statistical analysis of the data showed that the method is reproducible and selective for the estimation of Olmesartan in pure form and marketed Pharmaceutical dosage form during routine analysis. The results of the study showed that, the proposed RP-HPLC method was simple, rapid, precise, accurate which can be used for the routine determination of Olmesartan in pure form and marketed pharmaceutical dosage forms.



Keywords: RP-HPLC, Olmesartan, Method development, Method validation parameters

INTRODUCTION [1 2 3]


Quality is important and essential in every product or service but it is more vital in medicines as it is related to life. A Compromise in pharmaceutical quality is nothing but playing with the life of consumer. Pharmaceutical analysis plays a key role here. The terms quality, quality control, quality assuarance, total quality management are correlated. The ultimate goal of all these is to provide a product with good quality, safety, efficiency, purity, strength and identity. Analytical chemistry is divided into two areas called as qualitative analysis and quantitative analysis.

High-performance liquid chromatography (HPLC) is the fastest growing analytical technique for analysis of drugs. Its simplicity, high specificity and wide range of sensitivity make it ideal for the analysis of many drugs in both dosage forms and biological fluids.

DRUG PROFILE

Name^[1] : Olmesartan Structure^[2] :

Molecular Weight : 446.5016

Chemical Formula : C₂₄H₂₆N₆O₃

Indication : Olmesartan is indicated for the treatment of hypertension either alone or associated with other antihypertensive agents. Hypertension is a sustained elevation of resting blood pressure. The hypertensive effect can affect the systolic blood pressure, diastolic blood pressure or both. This condition tends to be asymptomatic until it reaches a severe or long-standing state.

Mechanism of Action^[3]: Olmesartan is a selective angiotensin II-type I receptor blocker with a large affinity. The activity of olmesartan is mainly performed in vascular smooth muscle cells and hence its activity prevents the vasoconstrictor effects of angiotensin.

METHOD DEVELOPMENT

Table 1: List of Instrument used			
S. No.	Instruments/Equipments/Apparatus		
1.	HPLC with Empower2 Software with Isocratic with UV-Visible Detector (Waters).		
2.	T60-LAB INDIA UV – Vis spectrophotometer		
3.	Electronic Balance (SHIMADZU ATY224)		
4.	Ultra Sonicator (Wensar wuc-2L)		
5.	Thermal Oven		
6.	Symmetry ODS RP C ₁₈ ,5µm, 15mm x 4.6mm i.d.		
7.	P ^H Analyzer (ELICO)		
8.	Vacuum filtration kit (BOROSIL)		

	Table 2: List of Chemicals used					
		Specifications		_		
S.N.	Name	Purity	Grade	Manufacturer/Supplier		
1.	Doubled distilled water	99.9%	HPLC	Sd fine-Chem ltd; Mumbai		
2.	HPLC Grade Water	99.9%	HPLC	Sd fine-Chem ltd; Mumbai		
3.	Methanol	99.9%	HPLC	Loba Chem; Mumbai.		
4.	Hydrochloric Acid	99.9	A.R.	Sd fine-Chem ltd; Mumbai		
5.	Acetonitrile	99.9%	HPLC	Loba Chem; Mumbai.		
6.	Sodium Hydroxide	99.9	A.R.	Sd fine-Chem ltd; Mumbai		

SOLUBILITY STUDY

Table 3: Lists of solvents				
SOLVENT SOLUBILITY				
Ethanol	Soluble			
DMSO	Soluble			
Dimethyl formamide	Soluble			
Aqueous Buffers	Sparingly soluble			

Optimization Of Chromatographic Conditions

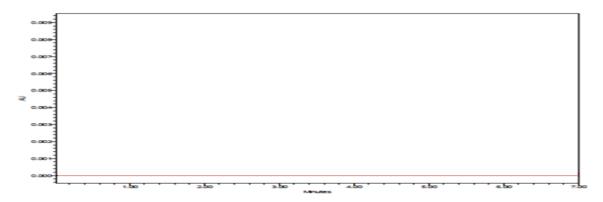

The chromatographic conditions were optimized by different means. (Using different column, different mobile phase, different flow rate, different detection wavelength & different diluents for sample preparation etc.

Table 4: Summary of Process Optimization					
Column Used	Mobile Phase	Flow	Wave	Observation	Result
		Rate	length		
Symmetry ODS RP C ₁₈ ,5µm, 15mm x	ACN : Water	0.8	268nm	Low response	Method
4.6mm i.d.	= 50:50	ml/min			rejected
Symmetry ODS RP C ₁₈ ,5µm, 15mm x	Methanol : Water	1.0	268nm	Very low	Method
4.6mm i.d.	= 70 : 30	ml/min		response	rejected
Symmetry ODS RP C ₁₈ ,5µm, 15mm x	ACN: Methanol	1.0	268nm	Tailing peak	Method
4.6mm i.d.	= 60:40	ml/min			rejected
Symmetry ODS RP C ₁₈ ,5µm, 15mm x	ACN: Phosphate buffer $= 55:45$	1.0	268nm	Broad Peak	Method
4.6mm i.d.		ml/ min			rejected
Symmetry ODS RP C ₁₈ ,5µm, 15mm x	ACN : Phosphate buffer (pH=3.2)	1.0	268nm	Tailing peak	Method
4.6mm i.d.	=65:35	ml/ min			rejected
Symmetry ODS RP C ₁₈ ,5µm, 15mm x	ACN : Water	1.0	268nm	Good Peak	Method
4.6mm i.d.	= 50 : 50	ml/min			accepted

Summary of Optimized Chromatographic Conditions

The Optimum Chromatographic conditions obtained from experiments can be summarized as below:

Table 5: Summary of optimised Chromatographic conditions			
Mobile phase	ACN : Water = 50:50		
Column	Symmetry ODS RP C ₁₈ ,5µm, 15mm x 4.6mm i.d.		
Flow rate	1.0 ml/ min.		
Wavelength	268nm		
Sampling System	Automatic		
Temp. of Auto sampler	Ambient		
Volume of injection	10µl		
Run time	07 mins		
Mode of Separation	Isocratic		

Fig 1: Chromatogram for Blank Solution



Fig 2: Chromatogram of Olmesartan in Optimized Condition

Table 6: Peak results of Optimized Condition						
Drug Name Rt Peak Area Tailing Factor Theoretical Plates						
Olmesartan	3.544	321458	0.99	3324		

Preparation of mobile phase

300ml of Acetonitrile and 700mL of HPLC Grade Water were mixed well and degassed in ultrasonic water bath for 15 minutes. The solution was filtered through 0.45 μ m filter under vacuum filtration.

Final Result & Discussion

The selected and optimized mobile phase was Acetonitrile and Water in the ratio of 50:50 and conditions optimized were flow rate (1.0 ml/minute), wavelength (268nm), Run time was 07 mins. Here the peaks were separated and showed better resolution, theoretical plate count and symmetry. The

proposed chromatographic conditions were found appropriate for the quantitative determination of the drug.

METHOD VALIDATION Accuracy: Recovery study

To determine the accuracy of the proposed method, recovery studies were carried out by adding different amounts (80%, 100%, and 120%) of pure drug of OLMESARTAN were taken and added to the pre-analyzed formulation of concentration $10\mu g/ml$. From that percentage recovery values were calculated. The results were shown in Table-7.

	Concentration (µg/ml)		_	0/ Decovery of		
Sample ID	Amount Added	Amount Found	Peak Area	% Recovery of Pure drug	Statistical Analysis	
S ₁ :80 %	8	8.069	485317	100.862	Mean= 100.5413%	
$S_2: 80 \%$	8	7.958	478751	99.475	S.D. = 0.947606	
S ₃ : 80 %	8	8.103	487312	101.287	% R.S.D.= 0.942503	
S ₄ : 100 %	10	10.048	601947	100.48	Mean= 100.2367%	
S ₅ : 100 %	10	10.073	603395	100.73	- S.D. = 0.650103	
S ₆ : 100 %	10	9.950	596176	99.50	% R.S.D.= 0.648568	
S7: 120 %	12	11.985	716127	99.875	Mean= 100.3607%	
S ₈ : 120 %	12	12.116	723840	100.966	S.D. = 0.555257	
S ₉ : 120 %	12	12.029	718706	100.241	% R.S.D. = 0.553262	

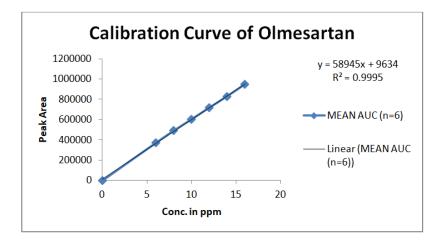
Precision Repeatability

The precision of each method was ascertained separately from the peak areas & retention times obtained by actual determination of six replicates of a fixed amount of drug. Olmesartan (API). The percent relative standard deviation was calculated for Olmesartan are presented in the Table-8

Table 8: Repeatability readings							
HPLC Injection Retention Time Peak Area							
Replicates of Olmesartan	Replicates of Olmesartan						
Replicate – 1	3.545	661022					
Replicate – 2	3.537	683137					

Parameshwar H et al / Int. J. of Pharmacy and Analytical Research Vol-11(2)2022 [209-215]

% RSD	0.134494	1.631336
andard Deviation	0.004764	11046.13
Average	3.5425	677121.7
Replicate – 6	3.550	692444
Replicate – 5	3.542	671941
Replicate – 4	3.538	682245
Replicate – 3	3.543	671941


Intermediate precision: (Intra-assay & inter-assay)

The intra & inter day variation of the method was carried out & the high values of mean assay & low values of standard deviation & % RSD (% RSD < 2%) within a day & day to day variations for Olmesartan revealed that the proposed method is precise.

Table 9: Results of intra-assay & inter-assay						
Conc. Of Olmesartan	Observed	Observed Conc. Of Olmesartan $(\mu g/ml)$ by the proposed method				
(API) $(\mu g/ml)$	Intra-	Intra-Day		Day		
	Mean (n=6)	% RSD	Mean (n=6)	% RSD		
8	7.76	0.82	8.28	0.98		
10	10.16	0.42	9.59	0.23		
12	11.68	0.13	12.19	0.33		

Linearity & Range

The calibration curve showed good linearity in the range of $0 - 16 \mu g/ml$, for Olmesartan (API) with correlation coefficient (r²) of 0.999 (Fig-30). A typical calibration curve has the regression equation of y = 58945x + 9634 for Olmesartan.

Fig 3: Calibration curve of Olmesartan (API)

Table 10: Linearity Results				
CONC.(µg/ml) MEAN AUC (n=6)				
0	0			
6	370200			
8	490231			
10	602707			
12	717538			
14	829248			
16	947852			

Method Robustness

Influence of small changes in chromatographic conditions such as change in flow rate (± 0.1 ml/min), Temperature ($\pm 2^{0}$ C), Wavelength of detection (± 2 nm) & Acetonitrile content in mobile phase ($\pm 2\%$) studied to determine the robustness of the method are also in favour of (Table-38, % RSD < 2%) the developed RP-HPLC method for the analysis of Olmesartan (API).

Tuble 11: Result of method 1 obusiness test			
Change in parameter	% RSD		
Flow (1.1 ml/min)	0.52		
Flow (0.9 ml/min)	0.56		
Temperature (27 ^o C)	0.52		
Temperature (23 ^o C)	0.49		
Wavelength of Detection (270 nm)	0.97		
Wavelength of detection (266 nm)	0.98		

Table 11: Result of method robustness te	st
--	----

LOD & LOQ

The Minimum concentration level at which the analyte can be reliable detected (LOD) & quantified (LOQ) were found to be $0.90 & 2.90 \text{ }\mu\text{g/ml}$ respectively.

System suitability testing is an integral part of many analytical procedures. The tests are based on the concept that the equipment, electronics, analytical operations and samples to be analyzed constitute an integral system that can be evaluated as such. Following system suitability test parameters were established. The data are shown in Table-12.

System Suitability Parameter

Table 12: Data of System Suitability Parameter					
S.No.	Parameter	Limit	Result		
1	Resolution	Rs > 2	9.45		
2	Asymmetry	$T \leq 2$	Olmesartan=0.25		
3	Theoretical plate	N > 2000	Olmesartan=5248		

Table 13: Recovery Data for estimation Olmesartan medoxomil in Ritemed tablets							
Brand name of Tablets	Labelled amount	Mean (±SD) amount (mg) found	Assay % (±SD)				
	of Drug (mg)	by the proposed method (n=6)	-				
Olmesartan	20	19.96 (±0.498)	99.8 (±0.343)				

The amount of drug found in Olmesartan Tablet was found to be 19.96 (±0.498) mg/tab for Olmesartan & % assay was 99.8 (±0.343).

RESULTS AND DISCUSSION

To develop a precise, linear, specific & suitable stability indicating RP-HPLC method for analysis of Olmesartan, different chromatographic conditions were applied & the results observed are presented in previous chapters.

Isocratic elution is simple, requires only one pump & flat baseline separation for easy and reproducible results. So, it was preferred for the current study over gradient elution.

In case of RP-HPLC various columns are available, but here Symmetry C18 Column, 250 mm x 4.6 mm and 5μ m column was preferred because using this column peak shape, resolution and absorbance were good.

Mobile phase & diluent for preparation of various samples were finalized after studying the solubility of API in different solvents of our disposal (methanol, acetonitrile, dichloromethane, water, 0.1N NaOH, 0.1NHCl).

The drug was found to be Soluble in ethanol, DMSO, Dimethyl formamide, sparingly soluble in aqueous buffers. Using these solvents with appropriate composition newer methods can be developed and validated.

Detection wavelength was selected after scanning the standard solution of drug over 200 to 400nm. From the U.V spectrum of Olmesartan it is evident that most of the HPLC work can be accomplished in the wavelength range of 210-300 nm conveniently. Further, a flow rate of 1 ml/min & an injection volume of 20 μ l were found to be the best analysis.

The result shows the developed method is yet another suitable method for assay and stability related impurity studies which can help in the analysis of Olmesartan in different formulations.

CONCLUSION

A sensitive and selective RP-HPLC method has been developed and validated for the determination of Olmesartan in pure form and Pharmaceutical dosage form. The UV detection was performed at 268nm. The Retention time of Olmesartan was found to be 3.544minutes. The Percentage Standard Deviation (%RSD) of the Olmesartan was and found to be 1.63%. The detector response was linear in the concentration range of 0-16µg/ml. The respective linear regression equation being Y = 58945.x + 9634 with R2 =0.999. The percentage recovery values of Olmesartan in pharmaceutical dosage form were found to be within the limits. The limit of detection and the limit of quantification for Olmesartan were found to be 0.90µg/ml and 2.90µg/ml respectively. Further the proposed RP-HPLC method has excellent sensitivity, precision and reproducibility, accuracy. The result shows the developed method is yet another suitable method for assay, purity which can help in the analysis of Olmesartan in different marketed formulations. The developed method was validated as per ICH guidelines for accuracy calculated as % recovery was in the range of 98.0% to 102.0%. The statistical analysis of the data showed that the method is reproducible and selective for the estimation of Olmesartan in pure form and marketed Pharmaceutical dosage form during routine analysis. The results of the study showed

that, the proposed RP-HPLC method was simple, rapid, precise, accurate which can be used for the routine

determination of Olmesartan in pure form and marketed pharmaceutical dosage forms.

REFERENCES

- 1. Wankhede SB, Tajne M, Gupta K, Wadodkar S. RP-HPLC method for simultaneous estimation of telmisartan and hydrochlorothiazide in tablet dosage form. Indian J Pharm Sci. 2007;69(2):298. doi: 10.4103/0250-474X.33164.
- 2. Torrealday N. J of Pharmaceutical and biomed. Ana. 2003;32:847.
- 3. Validation of analytical procedures, Methodology. ICH harmonized tripartite guideline. Vol. 108; 1996.
- 4. Labrid C. Roman. J Int Med. Jul-Dec 1998;36:137-44.
- 5. Muley PR. Indian Pharm. 2005;4:69.
- 6. McClellan KJ, Plosker GL. Trimetazidine. A review of its use in stable angina pectoris and other coronary conditions. Drugs. Jul 1999;58(1):143-57. doi: 10.2165/00003495-199958010-00016, PMID 10439934.
- 7. The complete Drug reference; Martindale. 32nd ed;12th pg. Pharmaceutical press.
- 8. FDA drug approvals list [online] [cited Aug 26 2003].
- 9. International Conference on Harmonization. Q2A: text on validation of analytical procedures. Fed Regist. Vol. 60(40); 1995. p. 11260-2.
- 10. International Conference on Harmonization. Q2B: validation of analytical procedures: methodology; availability. Fed Regist. Vol. 62(96); 1997. p. 27463-7.
- 11. FDA. Analytical procedures and methods validation: chemistry, manufacturing and controls documentation; availability. Fed Regist (Notices) 65. 2000;169:52776-7.
- 12. Patil KR, Rane VP, Sangshetti JN, Shinde DB. A Stability-Indicating LC Method for the Simultaneous Determination of Telmisartan and Ramipril in Dosage Form. Chroma. 2008;67(7-8):575-82. doi: 10.1365/s10337-008-0550-5.
- 13. Brunner HR. The new oral angiotensin II antagonist olmesartan medoxomil: a concise overview. J Hum Hypertens. 2002 May;16;Suppl 2:S13-6. doi: 10.1038/sj.jhh.1001391, PMID 11967728.
- 14. Brunner HR. Olmesartan medoxomil: current status of its use in monotherapy. Vasc Health Risk Manag. 2006;2(4):327-40. doi: 10.2147/vhrm.2006.2.4.327, PMID 17323586.
- 15. Gonakoti S, Khullar S, Rajkumar A. Olmesartan associated enteropathy: A rare underdiagnosed cause of diarrhea and weight loss. Am J Case Rep. 2019 Jan 26;20:111-6. doi: 10.12659/AJCR.913207, PMID 30683835.
- 16. PATEL JK, PATEL NilamK. Validated stability-indicating RP-HPLC method for the simultaneous determination of azelnidipine and olmesartan in their combined dosage form. Sci Pharm. 2014, feb;82(3), pg.no. 541–554. doi: 10.3797/scipharm.1312-14, PMID 25853066.
- 17. Kumar K, sastry G. V, preethi priyadarshini. A novel validated stability indacating method of olmesartan by using reverse phase chromatographic techniques. Int j pharmal resh & bio-sci. 2(5), 359-375. ISSN: 2277-8713.
- 18. Ganduri RB, Lanka RA, Pamidi S, Peddareddigari JR, Mohammed M. New RP-HPLC method for the determination of olmesartan medoxomil in tablet dosage form, Eurasian J. Anal. Chem, volume no. 5(2): 145-151. ISSN 1306-3057.