

INTERNATIONAL JOURNAL OF PHARMACY AND ANALYTICAL RESEARCH

ISSN: 2320-2831

IJPAR |Vol.4 | Issue 2 | April-May-2015 Journal Home page: www.ijpar.com

Review article

Open Access

A review on medicinal plants with hypolipidemic activity

G.Alagumanivasagam and P.Veeramani*

Department of Pharmacy, Annamalai University, Annamalai Nagar, Tamilnadu, India - 608002

* Corresponding author: P.Veeramani

E-mail id: vrragavan5@gmail.com

ABSTRACT

In the last few years there has been an exponential growth in the field of herbal medicine and these drugs are gaining popularity both in developing and developed countries because of their natural origin and less side effects. There are a growing number of studies reporting hypolipidemics activity with traditional medicines. The present review constituents on plant with hypolipidemic activity from this plants and special emphasis on those found in different regions all over the world, including mainly India. The information is recorded in plant scientific name, family, part used, route of administration, dose given, Method used (Pharmacological method) and references. The advantages of herbal medicines reported are effectiveness, safety, affordability, and acceptability. The present review focus on the botanical sources, Phytochemistry, Therapeutic uses, potential Pharmacological effect of some of the herbs, and Siddha formulations, being used in Siddha system of medicine for urolithiasis.

Keywords: Hypolipidemic activity, Traditional medicine, Herbal medicine.

INTRODUCTION

Hyperlipidemia is one of the greatest risk factor contributing to prevalence and severity of cardiovascular diseases like coronary heart diseases (WHO 1997). numerous population of total cholesterol (TC), Low density lipoproteins-cholesterol (LDL-C), and very low density lipoprotein – cholesterol (VLDL–C) in plasma with an increased incidence of atherosclerotic events (Goldstein et al, 1973, Keys-1975). Medicinal plants have always been considered as healthy source of life for all peoples due to its rich therapeutic properties and being 100% natural. Medicinal plants are widely used by majority of populations to cure various diseases and illness and high impact on the world's economy(43). A plant is rich in fruits, vegetables, and legumes and low

in saturated fat, along with regular aerobic exercise program, is an effective risks of cardiovascular diseases (Berliner JA. 1996A Plant based diet that is rich in fruits, vegetables, and legumes and low in saturated fat, along with regular aerobic exercise program, is an effective prescription for anyone with elevated risks of cardiovascular diseases (Berliner JA., (1996). Hyperlipidemia is one of the greatest risk factors contributing to prevalence and severity of cardiovascular complications like coronary heart diseases including atherosclerosis. Hyperlipidemia is characterized by elevated serum total cholesterol and low density and very low density lipoprotein cholesterol and decreased high density lipoprotein. Hyperlipidemia associated lipid disorders are considered to cause the atherosclerotic

cardiovascular complications. Among these hypercholesterolemia and hypertriglyceridemia are closely related to ischemic heart disease. High plasma level of cholesterol along with generation of reactive oxygen species (ROS) play key role in the development of coronary artery diseases (CAD) and atherosclerosis. Oxidative stress is currently suggested a mechanism underlying hypercholesterolemia. Though many advances in the diagnosis of diseases have been made, the battle to increase quality of human life and proper treatment of these diseases is still unmet. Till now there is no accurate therapy for many of these diseases without considerable adverse or serious side effects. At present, the only option is a long list of prescription drugs that may alleviate symptoms but slowly eat away body's immunity and quality of life. In this context, ⁽⁴⁷⁾it worth mentioning that Indian plants are considered a vast source of several pharmacologically active principles and compounds that are commonly used in home remedies against multiple ailments. Currently, no pharmacological treatment provides sustained weight loss with minimal adverse effects. Thus, attempts have been made to reduce body weight with such pharmacological intervention that possesses minimal side effects. Plants have been used as traditional natural medicines for healing many diseases. In particular, various oriental medicinal plants are reported to have biological activity. The medicinal plants have been used in traditional medicines for hundreds of years with reputation as efficacious remedies although there may not sufficient scientific data to substantiate their

efficacy. These plants are rich source of bioactive compounds and thus serve as important raw material for drug production. It has now been established that the plants synthesis and accumulate some secondary metabolites like alkaloids, glycosides, tannins, volatile oils etc.(45).

MATERIALS AND METHODS

In the review we collected information from the chemical abstracts, National and International journals, E-Library, Internet & other research materials. 1) High Cholesterol diet induced method (HCD), 2) Triton induced hyperlipidemic method (HFrD) 3) Tylaxapol induced hyperlipidemic method (Tyl) 4) High fat diet induced method 6) High fat diet induced method (HFD).

CONCLUSION

In conclusion all the 101 plants species listed described appear to be promising as hypolipidemic agents with activity mediated through various mechanisms. Further experiments will possibly define this pharmacological effect and active constituents. May become of importance for human clinical treatment. Hyperlipidemia is a very important major cause of cardiovascular disorder. Due to unwanted side effects the efficacies of these compounds are debatable and there is a demand for new compounds for the treatment hyperlipidemia.

BOTANICAL NAME	FAMILY	PARTS USED	DOSE (Mg/Kg)	REFERENCE
Amaranthus Spinosus	Amaranthaceae	Leaves	200,300,400	Girija, et.al
Glycyrrhiza Glabra	Fabaceae	Root	5/10 g	Nishant, et.al
Withania Somnifera	Solanaceae	Root	5/10 g	Nishant, et.al
Chlorophytum Borivilianum	Liliaceae	Root	5/10 g	Nishant, et.al
Moringa oleifera	Moringaceae	Leaves, root	100/200	Rajanandh et.al
Sphaeranthus indicus	Asteraceae	Flower heads	500	V V Pandey, et.al
Rhinacanthus nasutus	Acanthaceae	Whole plant	200,400	Brahma, et.al
Pithecellobium Dulce benth	. Leguminosae	Fresh leaves	200	Sundarajan, et.al
Hibiscus cannabinus	Malvaceae	Fresh leaves	200,400	Shivali et al
Eclipta prostrate	Asteraceae	Plant juice	50,300,600	RDandap, et.al
Sesbania grandiflora	Fabaceae	Leaves	200 µg	Saravanakumar
Lycium barbarum	Solanaceae	Fruit	100	Qiong Luo, et.al
Ougeinia oojeinensis	Fabaceae	Bark	200 µg/Kg	Velmurugan, et.al

PLANTS HAVING HYPOLIPIDEMIC ACTIVTY

www.ijpar.com

~ 130~

Randia dumetorum	Rubiaceae	Fruit	200	Piyush et al
Luffa aegyptiaca	Cuccurbitaceae	Fruit	400	AbdulHamed,et.al
Bauhinia purpurea	Fabaceae	Leaves	300	Lakshmi, et.al
Psidium guajava	Myrtaceae	Leaves	300	Shubhangi, et.al
Piliostigma Thonningii	Musecea	Leaves	50,100,200	Dasofunjo, et.al
Crotalaria juncea	Fabaceae	Leaves	100,200	KHarikumar,et.al
Abelomoschus esculentus	Malvaceae	Whole plant	300	T.H.Ngoc, et.al
Achyranthus Aspera	Amaranthaceae	Roots	100	Ak khanna, et.al
Aegle marmelos	Rutaceae	Leaf	300	Partha Ray, et.al
Ajuga iva	Labiatea	Whole plant	10	Badialyoussi,et.al
Allium cepa	Liliaceae	Fresh bulbs	200	K.Kumari, et.al
Allium sativum	Liliaceae	Fresh fruits	10	Allenki,et.al
Alpinia galanga	Zingiberaceae	Rhizome	20	CRAchuthan,et.al
Alstonia scholarin	Apocynaceae	Leaves	100,200,400	S.Arulmozhi, et.al
Amaranthus Viridis	Amaranthaceae	Leaves	200,400	AshokKumar,et.al
Anogeissus latifolia	Combretaceae	Fresh gum	250,500,750	CKRamesh et.al
Anthocephalus indicus	Rubiaceae	Root	500	R.K.Singh et.al
Apium graveolens	Apiaceae	Seed	213,425	Kamlamansi et.al
Arginia spinosa	Sapotaceae	Fresh seed oil	200	H.Berrougui et.al
Asparagus racemosus	Liliaceae	Roots	10,20	NVisavadiya et.al
Asystasia gangetica	Acanthaceae	Leaves	100	PradipKumar et.al
Bauhinia Variegate	Ceasalpiniacea	Roots &Stems	200,400	T.G.Rajani et.al
Caesearia Sylvestris	Flacourtiacea	Leaves	125,250,500	Schoenfelderet.al
Capparis Decidua	Capparidacea	Flower,Fruits	500	N.Chahalia et.al
Capparis Spinosa	Capparidacea	Fruits	20	M.Eddouks et.al
Carica papaya	Caricaceae	Seed	100,400	AAAdeneye et.al
Celastrus paniculatus	Celastraceae	Seed	65	R.H.Patil et.al
Curcuma longa	Zingiberaceae	Rhizome	300	MAlihussain et.al
Cymbopogon	Graminaceae	Leaves	125	AAAdeneye et.al
Cassia fistula	Fabaceae	Legume	100,250,500	G.C.Jain et.al
Citratus Coccinia indica	Cucurbitaceae	Aerial Parts	100,200	KBalaraman et.al
Crategus aronica	Rosaceae	Fruits	10	R. Khalil, et.al
Dracocephalum kotschyi	Lamiaceae	Leaves	40,80,120	E.Sajjadi, et.al
Eclipta prostate	Asteraceae	Leaves	100,200	Dhandapani, et.al
Enicostemma littorale	Gentinaceae	Whole plant	50,75	H.Vaidya, et.al
Eugenia jambolana	Myrtaceae	Seed	150	P.Daisy, et.al
Ficus racemosa	Moraceae	Bark	100,500	D.Sophia, et.al
Garcinia cambogia	Guttiferae	fruits	5,10	A.S.Koshy, et.al
Glyccyrrhiza Glabra	Fabaceae	Roots	100	K.Srivastava,et.al
Hibiscus rosasinesis	Malvaceae	Root	500	R.Singh, et.al
Ipomoea Aquatic	Convovulacea	Leaves	200,400	Sirarama, et.al
Laegenaria siceraria	Cucurbitaceae	Fruits	100,200,300	B.V.Ghule, et.al
Leptadenia pyrotechnica	Asclepidaceae	Aerial parts	250	G.C.Jain, et.al
Lycium barbarum	Solanaceae	Fruit	0.25	DuLeuo, et.al
Melothria maderaspatana	Cucurbitaceae	Aerial parts	100,200	K.Balarama,et.al
Errryogosperma	Morigaceae	Leaves	200	Dhandapani,et.al
Morus alba	Moraceae	Leaves	7,5,15	Jingjinghen,et.al
Morus indica	Moraceae	Leaves	400	PradipKumar,et.al

www.ijpar.com ~ 131~

Mucuna prurines	Leguminoseae	Leaves	200	MuruganM., et.al
Nelumbo nuficera	Nelumbonaceae	Leaves	50	ToyingZhou,et.al
Orthosiphon stamnineus	Labiateae	Bark	500,750	Umbare R.P, et.al
Ormosiphon siamnineus Ocimum basilicum	Labiateae		20	M.Eddouks, et.al
Ocimum bastilcum Ocimum sanctum	Labiateae	Whole plant Leaves		Thamolwan,et.al
			4,45	
Peucedanum pastinacifolium	Apiaceae	Aerial parts	25,250	Movahedian,et.al
Phyllanthus Amarus	Euphorbiacea	Leaves	300,500	RP. Umbare, et.al
Plumeria rubra	Apocynaceae	Flowers	250	HazeenBengum,et.al
Pongamia pinnata	Leguminosaeae	Flowers	300,100	A.Semalty, et.al
Pueraria tuberosa	Fabaceae	Tubers	200,400	GRamawat, et.al
Rosa laevigata	Rosaceae	Fruits	25,50	Y.T.Liu, et.al
Ruta graveolens	Rutaceae	Leaves,Plant	125	M.Ahmed, et.al
Salacia reticulate.oblonga	Celestraceae	Root&Barks	500	Rabbani, et.al
Salicornia Herbacea	Chenopodiacea	Whole Plants	0.25,0.5	Jung-InKim, et.al
Salvadora oleoides	Salvadoraceae	Aerial parts	1gm,2gm	J.P.Yadav, et.al
Sapindus emarginatus	Sapindaceae	Pericarp	100,200	S.Jeyabalan, et.al
Sesbania grandiflora	Fabaceae	Leaves	200	Saravkumar,et.al
Syzigium cumini	Myrtaceae	Leaves	125,25,500	V.Reus, et.al
Syzigium alternifolium	Myrtaceae	Seed	50,250	R.B.Kastti et.al
Terminalia	Combretaceae	Pericarp	1.05	Maruthappan,et.all
Amaranthus caudatus L	Amaranthaceae	Leaves	200-400	PankajG.Jain,et all
Butea monosperma Lam	Fabaceae	Leaf	200 - 400	PankajG.Jain.et all
Cassia fistula L	Fabaeae	Stem, plant	100 - 500	PankajG.Jain et all
Commiphora mukul	Burseraceae	Fruit	5 – 25	PankajG.Jain et all
Eclipta alpa L,	Asteraceae	Flower	140 - 200	Hassk et all
Eugenia jambolana Lam	Myrtaceae	Fruid of Tree	100 - 200	PankajG.Jain et all
Ficus racemosa L	Moraceae	Whole Plant	100 - 500	PankajG.Jain et all
Glycyrhiza glabra Linn	Leguminaceae	Fruid of plant	50	PankajG.Jain et all
Lagenaria siceraria Standly	Cucurbitaceae	Redish Tree	200 - 400	PankajG.Jain et all
Moringa oleifia L	Rubiaceae	Whole Plant	250 - 300	PankajG.Jain et all
Moringa oleifera Lam	Moringaceae	Fruid of Plant	150 - 600	PankajG.Jain et all
Pterocarpus marsupium	Fabaceae	Seed,Plant	150 - 300	PankajG.Jain et all
Sapindus purpurea Vahl	Sapindeae	Flower	100 - 200	PankajG.Jain et all
Spergularia purpuria G	Caryophyllaceae	Seed,Flower	10	PankajG.Jain et all
Terminus arjuna Roxb	Combritaceae	Flower,Stem	100 - 200	PankajG.Jain et all
Vernonia anthalmintica	Zingiberaceae	Seeds	0.25,0.50	N.R.Yellu
Withania somnifera	Solanceae	Roots,leaf	100,200	hang Won Choi
Trianthum portulacastrum	Azoaceae	Whole plant	100,200	N.R.Yellu
Tribulus alatus	Zygophyllaceae	Aerial parts	50	W.H.EI.Tantway
Zingiber officinale	Zingiberaceae	Rhizome	200	Bhandari

REFERENCES

- [1] Bidkar J.S.Ghanwat D.D., A Global Review on Plants with Hypolipidemic Activity. SGMSPM's Sharadchandra Pawar College of Pharmacy, Otur, Pune, Maharashtra, India.
- [2] Keys A. Coronary heart disease, the global picture. Atherosclerosis 1975. 22:149-192.
- [3] Grundy SM.Cholesterol and coronary heart disease: a new era.Journal of American Medical Association 1986. 256:2849-2858.
- [4] Chattopadhyaaya R., Pathak D. and Jindal D.P. "Antihyperlipidemic agents a review" Indian drugs 1996; 33 (3).

www.ijpar.com ~ 132~

- [5] Todd,P.A.,Benfield,P.,and Goa, K.L. Guar gum. A review of its pharmacological properties, and use as a dietary adjunct in hypercholesterolaemia. Drugs 1990. 39(6), 917–928.
- [6] Potter, S.M. Overview of possible mechanism for hypocholesterolemic effect of soy protein. J. Nutr. 1995, 125, 606s–611.
- [7] Anderson, J.Story, L.Sieling, B., Lin Chen, W., Petro, M.S., and Story, J.Hypocholesterolemic effects of oatbran or beanintake for Hypercholesterolemic men. Am.J. Clin. Nutr. 1984. 40, 1146–1155.
- [8] Der Marderosian, A. and Beutler, J.A. "The Review of Natural Products". Facts & Comparisons, St Louis, USA, 2002.
- [9] V. Maruthappan, K. Sakthi Shree. Hypolipidemic activity of Haritaki (Terminalia chebula) in atherogenic diet induced hyperlipidemic rats J. Adv. Pharm. Tech. Res. 2010 Vol. 1 (2).
- [10] Tatiana Schoenfelder, Carolini Z. Warmlin, Michele S. Manfredini, Larissa L. Pavei, Juana V.Réus, Taciane C.Tristão, Marcelo S. Fernandes, Luciane Costa-Campos Hypoglycemic and hypolipidemic effect of leaves from Syzigium cumini (L.) Skeels, Myrtaceae. In diabetic rats Brazilian Journal of Pharmacognosy2010. 20(2): 222-227.
- [11] R. P. Umbare, G. S. Mate, D. V. Jawalkar, S. M. Patil, S. S. Dongare. Quality evaluation of Phylanthusamarus (Schumach) leaves extract for its hypolipidemic activity Biology and Medcine2009, Vol 1 (4). 2(11), 1735-1738.
- [12] A. John Merina, D. Sivanesan, V. Hazeena Begum and N. Sulochana, Antioxidant and Hypolipidemic Effect of Plumeria Rubra L. in Alloxan Induced Hyperglycemic Rats E-Journal of Chemistry 2010. 7(1),1-5.
- [13] R. Punitha and S. Manoharan Antihyperglycemic and antilipidperoxidative effects of Pongamia pinnata (Linn.) Pierre flowers in alloxan induced diabetic rats Journal of Ethnopharmacology 2006, Volume105, Issues 1-2. 39-46.
- [14] Tanwar, Y.S., Goyal, S. and Ramawat,K.G. Hypolipidemic effects of tubers of Indian Kudzu (Pueraria tuberosa) Journal of Herbal Medicine and Toxicology 2008, 2 (1) 21-25.
- [15] Yue-Tao Liu, Bi-Nan Lu, Li-Na Xu, Lian-Hong Yin, Xiao-Na Wang, Jin-Yong Peng, Ke-Xin Liu, The antioxidant activity and hypolipidemic activity of the total flavonoids from the fruit of Rosa laevigata Michx Natural Science 2010, Vol.2, No.3.175-183.
- [16] Osama Mohamed Ahmed, Adel Abdel Moneim, Ibrahim Abul Yazid, Ayman Moawad Mahmoud, Antihyperglycemic, antihyperlipidemic and antioxidant effects and the probable mechanisms of action of Ruta graveolens infusion and rutin in nicotinamide Streptozotocin induced diabetic rats Diabetologia Croatica 2010. 39-1.
- [17] Rabbani S.I., Asad M.and Asdaq S.M.B.Hypolipidemic activity of Salacia oblonga and S.reticulata Indian Drugs 2006. 43(10), 844-847.
- [18] Ji-Yeon Hwang, Soo-Kyung Lee, Ja- Rim Jo, Mi-Eun Kim, Hyun-Ah So, Chang-Woo Cho, Young-Wan Seo and Jung-In Kim Hypolipidemic effect of Salicornia herbacea in animal model of type 2 diabetes mellitus Nutrition Research and Practice 2007. 1(4), 371.
- [19] Saravanakumar, S.Vanitha, M. Ganesh, J.Jayaprakash, N. M. Ramaswamy, Hypolipidemic activity of Sesbania grandiflora in triton wr-1339 induced hyperlipidemic rats. International Journal of Phytomedicine 2010. 2:52-58.
- [20] Dr.Arun Kumar, Dr.C.Sunil A Review of hyperlipidemia in medicinal plants, St. Joseph's College of Pharmacy, Cherthala, Kerala, India.2013.vol 2(4), 219-220.
- [21] Ankur rohilla, Nidhi Dagar, Seema Rohilla, Amarjeet Dahiya, Ashok Kushnoor. Inter J Curr Pharma Res 2012. 4 :17-18.
- [22] Ross R, Glomset JA. The pathogenesis of atherosclerosis. N Engl J Med 1976, 295:372-77.
- [23] Grundy SM, Vega GL. Hypertriglyceridemia: causes and relation to coronary heart disease Semin. Thromb.Hemost 1988. 249-64.
- [24] Dargel R. Lipoproteins and the etiopathogenesis of atherosclerosis. Zentralbl Allg Pathol 1989,135: 502-504.
- [25] Kritchevsky D. Cholesterol vehicle in experimental atherosclerosis. A brief review with special reference to peanutoil. Arch Pathol Lab Med 1988, 112:1039 -4.
- [26] Fryar CD, Hirsch R, Eberhardt MS, Yoon SS, Wright JD. Hypertension, high serum total cholesterol, and

www.ijpar.com ~ 133~ diabetes: racial and ethnic prevalence differences in U.S. adults, 1999-2006. NCHS Data Brief 2010,36: 2-6.

- [27] Smelt AH. Triglycerides and gallstone formation. Clin Chim Acta 2010, 411:1627-30.
- [28] Pande VV, Sonal Dubey. Antihyperlipidemic activity of Sphaeranthus indicus on atherogenic diet iduced hyperlipidemia in rats. Inter J Green Pharmacy 2009. 3:159-160.
- [29] Brahma Srinivas Rao Desu, Saileela CH. Anti-hyperlipidemic activity of methanolic extract of Rhinacanthus nasutus. Inter J Res Pharmacy & Chemistry 2013,3:708-711.
- [30] Sundarrajan T, Rajkumar T, Udhayakumar E, Arunachalam G. Hypolipidemic activity of Pithecellobium dulce benchin triton WR-1339 induced hyperlipidemic rats. Inter J Chem Pharma Sci 2010, 1:86-89.
- [31] Shivali N Mahadevan, Pradeep Kamboj. Antihyperlipidemic activity of hydroalcoholic extract of Kenaf (Hibiscus cannabinus .L) leaves in high fat diet fed rats. Schol Res Lib Annals Biol Res 2010,1:176-180.
- [32] Srikanth Jeyabalan, Muralidharan Palayan. Antihyperlipidemic activity of Sapindus Emargintus in Triton WR-1339 induced albino rats. Res J Pharmacol & Technol 2009, 2:319-323.
- [33] Dandapani R. Hypolipidemic activity of Eclipta prostrata (L.) leaf extract in atherogenic diet Induced hyperlipidemic rats. Indian J Experimental Biol 2007,45:617-618.
- [34] Saravanakumar A, Vanitha S, Ganesh M, Jayaprakash J, Ramaswamy NM.Hypolipidemic activity of Sesbania grandiflora in triton WR-1339 induced hyperlipidemic rats. Inter J Phytomed 2010;2:52-58.
- [35] Qiong Luo, Yizhong Cai, Jun Yan, Mei Su, Harold Corke. Hypoglycemic & hypolipidemic effects & antioxidant activity of fruit extracts from Lycium barbarum. Life Sciences 2004, 76:137-149.
- [36] Velmurugan C, Sundaram T, Sampath Kumar R, Vivek B, SheshadriShekar D, Ashok Kumar BS. Antidiabetic and hypolipidemic activity of bark of ethanolic extract of Ougeinia Oojeinensis (ROXB.). Med J Malaysia 2011, 66:22-26.
- [37] Piyush Ranjan M, Prasanna Kumar P, Korla Apanna C, Saswati Panigrahi. Evaluation of acutehypolipidemic activity of different plant extracts in Triton Wr-1339 induced hyperlipidemia in albino rats. Pharmacologyonline 2011, 3:925-934.
- [38] Abdul Hameed T, Surulivel MKM, Mohammed Fazil A, Shaik Shafee Ahamed G et al. Hypol pidemic activity of Luffa Aegiptiaca fruits in cholesterol fed hypercholeterolemic rabbits. Inter J Pharma Applications 2011,2:81-88.
- [39] Lakshmi BVS, Neelima N, Kasthuri N, Umarani V, Sudhakar M. Antihyperlipidemic activity of Bauhinia purpurea extracts in hypercholesterolemic albino rats. Int J Pharm Tech Res 2011;3:1265-1272.
- [40] Shubhangi Shinde, Niranjan Chivate, Pramodinee Kulkarni, Nilofer Naikwade. Hypolipidemic activity of Psidium guajava linn. leaves extracts in hyperlipidemic rats. Int J Pharm Pharm Sci2013;5(1): 70-72.
- [41] Dasofunjo K, Nwodo OFC, Johnson JT, Ukpanukpong RU, Ugwu MN, Ayo VI. Phytochemical screening and effect of ethanolic leaf extract of Piliostigma thonningii on serum lipid profile of male albino rats. J Nat Prod Plant Resource 2013, 3:4-8.
- [42] R.C.Patel institute of Pharmaceuitcal Education and Research, Shirpur, Dhule (MS), India. A Review of indian medicnal plants with hypolipidemic activity and their medicinal impotance, 2013, 3:257-260.
- [43] S Malhotra, A Pal Singh. A Review of Pharmacology of Phytochemicals from Indian Medicinal Plants. The Internet Journal of Alternative Medicine. 2006, Volume 5 Number 1.
- [44] The Screening of Phytochemical and Pharmacological activity of Leaves of Plumeria Rubra, Ramproshad S,T.Afroz et.al.,2012.
- [45] Pankaj G.Jain, Sanjay J, Surana, A Review of Indian medicinal plants with hypolipidemic activity and their medicinal importane. World journal of pharmacy and pharmaceutical science, 2003, Volume 4(3).1477-1493.
- [46] Souravh Bais, Guru Sewak Singh, and Ramica Sharma ,Antiobesity and Hypolipidemic Activity of Moringa oleifera Leaves against High Fat Diet-Induced Obesity in Rats. Advances in Biology, Volume 2014 (2014), Article ID 162914, 9.