

INTERNATIONAL JOURNAL OF PHARMACY AND ANALYTICAL RESEARCH

IJPAR |Vol.4 | Issue 4 | Oct- Dec -2015 Journal Home page: www.ijpar.com

Research article

Open Access

ISSN:2320-2831

Formulation and invitro evaluation of nystatin organo gels

Mohammed Asif Hussain, Somoju Srikanth^{*}, Maimuna Anjum

Blue Birds College of pharmacy, Bheemaram, Hanamkonda, Warangal, Telangana, India

*Corresponding author: Mohammed Asif Hussain

Email Id:somojusrikanth@gmail.com

ABSTRACT

The purpose of topical dosage form is to conveniently deliver drug across a localized area of the skin. To develop an ideal dosage form, one must take into account flux of the drug across the skin, nature of drugs, patient acceptability of the formulation, etc.., Nystatin is categorized as synthetic allylamine antifungal drug and is successfully used to treat Fungal disorders. On this contest, emulgel was formulated using carbopol 934 and HPMC, liquid paraffin as oil phase, emulsifying agents like tween 20 and span 20 and propylene glycol as permeation enhancersOn basis of quality of organogels produces total eight formulations F1 to F8 were selected. They were evaluated for physical appearance, pH, rheological study, spreadability, drug content and *in-vitro* drug permeation study. Thus, the formulated organogel had a distinct advantage over existing conventional dosage form in that the drug permeation was found to be rapid across the skin and hence the increased therapeutic response by bypassing 1st pass metabolism and with no gastrointestinal problems and patient compliance.

Keywords: Nystatin, Organo Gel Antifungal, First pass metabolism.

INTRODUCTION

Transdermal drug delivery system has been in existence for a long time. In the past, the most commonly applied systems were topically applied lotions, creams and ointments for dermatological disorders. The occurrence of systemic side-effects with some of these formulations is indicative of absorption of the drugs through the skin, which lead to the idea of TDDS. In a broad sense, the term transdermal delivery system includes all topically administered drug formulations intended to deliver the active ingredient into the general circulation. Transdermal therapeutic systems have been designed to provide controlled continuous delivery of drugs via the skin to the systemic circulation.

Transdermal drug delivery system (TDDS) established itself as an integral part of novel drug delivery systems1. The novel Transdermal drug delivery is defined as self-contained, discrete dosage forms which, when applied to the intact skin, deliver the drug through the skin at a controlled rate to the systemic circulation2.

Gels

Gels are defined as a semisolid system in which a liquid phase is constrained within a polymeric matrix in which a high degree of physical and chemical cross-linkingintroduced³.

METHODOLOGY

Calibration curve of Nystatin

Preparation of stock solution

Accurately weighed amounts of 100 mg of Nystatinwas transferred into a volumetric flask made up to 100 ml with pH 6.8 Phosphate buffer. The resulted solution had the concentration of 1mg/ml which was labeled as 'stock solution-1.

Preparation of working standard solution

From this stock solution 10ml was taken and diluted to 100 ml with pH 6.8 Phosphate buffer which has given the solution having the concentration of 100mcg/ml.

Preparation of serial dilutions for standard calibration curve

Necessary dilutions were made by using this second solution to give the different concentrations of Nystatin (5-30mcg/ml)solutions. The absorbances of above solutions were recorded at λ_{max} (290nm) of the drug using double beam UV-Visible spectrophotometer. Standard graph was plotted between the concentration (on X-axis) and absorbance (on Y-axis).

FORMULATION OF NYSTATIN ORGANOGEL

Gel preparation

The composition of Nystatinorganogel was shown in the formulation code table 1. The carbopolgel was prepared by dispersing 0.25g of carbopol 934 in purified water with constant stirring at a moderate speed and soaked overnight. The gel was obtained by neutralizing the dispersion with tri ethanol amine and pH is adjusted to 6.5 and purified water was added to adjust the weight to 50ml.

In case of Hydroxy Propyl Methyl cellulose gel was prepared by dispersing HPMC in hot purified water $(80^{\circ}C)$ and the dispersion was cool, then the weight was adjusted to 50ml with purified water.

Organogel preparation

The continuous organic phase of organogel was prepared by dissolving span 20 and tween 20 in light liquid paraffin and heated upto 70° -80⁰C.Methylparaben, Propylparaben were mixed with propylene glycol and glutaraldehydeand and this added this mixture was dissolved in the aqueous phase. Then oil phase was mixed slowly with aqueous phase and final volume is made with purified water.

Organogel preparation

The obtained organic mixture was mixed with the gel and volume was adjusted to 50ml with water and subjected to homogenization for 45 minutes to get Nystatinorganogel 2% w/v.

Table 1. Formulation code								
Ingredients	F1	F2	F3	F4	F5	F6	F7	F8
(% w/v)								
Nystatin (mg)	500	500	500	500	500	500	500	500
HPMC K15(ml)	0.5	0.5	0.5	0.5	-	-	-	-
Carbopol 934(ml)	-	-	-	-	0.25	0.25	0.25	0.25
Light liquid paraffin(ml)	2.5	3.75	2.5	3.75	2.5	3.75	2.5	3.75
Tween 20(ml)	0.3	0.3	0.5	0.5	0.3	0.3	0.5	0.5
Span 20(ml)	0.45	0.45	0.75	0.75	0.45	0.45	0.75	0.75
Propylene glycol(ml)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Ethanol(ml)	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
Methylparaben(ml)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Propylparaben(ml)	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Glutaraldehyde(ml)	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Purified water	50	50	50	50	50	50	50	50
(ml) (q.s)								

Identification and authenticity of Nystatin pure drug

Physical appearance

The physical appearance of the drug was examined by organoleptic properties, and results were obtained as follows

Colour

White fine crystalline powder

Solubility studies

Table 2: Solubility studies					
Solubility					
Slightly soluble					
Soluble					
Soluble					
Soluble					

Determination of melting point

The melting point of nystatin was determined by capillary tube method and it was found to be 160^oC.This value matches the literature reference standard drug value.

Calibration curve of Nystatin

Table 3: Calibration	curve of nystatin:
Conc.(µg/ml)	Absorbance
0	0
5	0.21
10	0.416
15	0.601
20	0.753
25	0.904
30	1.076

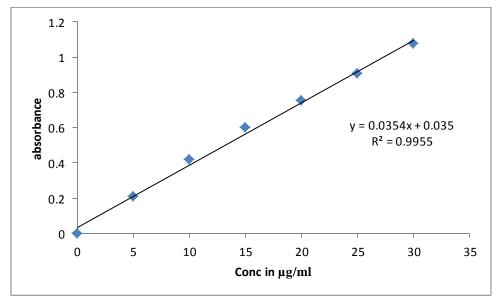
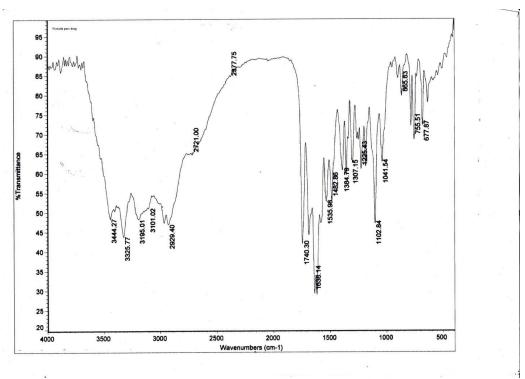



Figure 1: Calibration curve of Nystatin

DRUG-EXPIENT COMPATIBILITY STUDIES FTIR study

Figure no 2: FTIR of nystatin drug

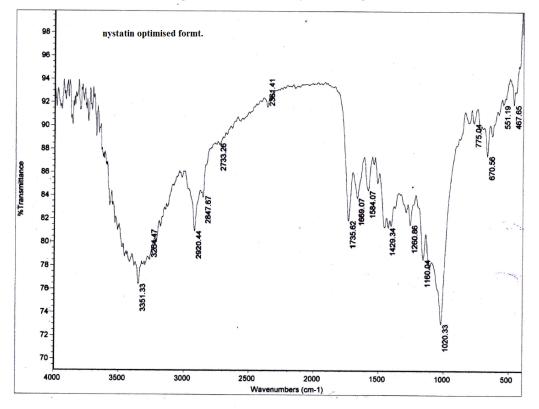


Figure no 3: FTIR of nystatin organogel optimized form

www.ijpar.com ~521~

EVALUATION PARAMETERS

Physical appearance

Table 4. Physical appearance						
Formulation code	Color	Homogeneity	Consistency	Phase separation		
F1	Creamy white	Homogenous	Smooth	Not occurred		
F2	Creamy white	Homogenous	Smooth	Not occurred		
F3	Creamy white	Homogenous	Smooth	Not occurred		
F4	Creamy white	Homogenous	Smooth	Not occurred		
F5	Creamy white	Homogenous	Smooth	Not occurred		
F6	Creamy white	Homogenous	Smooth	Not occurred		
F7	Creamy white	Homogenous	Smooth	Not occurred		
F8	Creamy white	Homogenous	Smooth	Not occurred		

pH determination

Table 5.pH determination					
Formulation code	pН				
F1	6.4±0.43				
F2	6.1±0.63				
F3	6.7±0.25				
F4	6.0 ± 0.72				
F5	6.3±0.11				
F6	6.4 ± 0.24				
F7	6.7 ± 0.88				
F8	6.5±0.02				

 P^H evoluation of a topical dosage form is very important as it may cause irritation to the skin if varied from the normal p^H of the skin condition.Furthur more polymer like carbapol give consistency if the p^{H} was around 6 so all the formulations were evaluated for p^{H} .

Spre adability

Table 6.Spreadability studies						
Formulation code	Spreadability (cm/sec)*					
F1	3.0±0.01					
F2	3.5±0.40					
F3	3.2±0.55					
F4	3.4±0.48					
F5	3.5±0.62					
F6	4.1±0.12					
F7	2.5±0.75					
F8	2.3±0.23					

All the formulations were checked for the spreadability and the data was given in table 6.By taking the data consideration it was observed that concentration of span 20 and tween 20makes the difference in spreadability F7 were having

maximum concentration of span 20 and ttween 20 compared to other formulations and the spreadability values found to be 2.5 ± 0.75 the optimized formulation compared to other formulations.

Table 7: Rheological study data					
code	Viscosity (cp)				
	3600				
	3300				
	3900				
	3650				
	4300				
	3100				
	4800				
	3100				
	0				

Rheological studies (for 10rpm spindle 6)

The viscosities of all the formulations were measured using Brookfield viscometer at 10 rpm using spindle 6,it was found to be all the formulatons followed shear thinning effect with thixotropic property. It was observed that the viscosity of the formulation increases with the increase in organosion-gel ratio.

Drug content determination

Formulation	code	Mean%
F1		98.41
F2		99.15
F3		98.02
F4		99.47
F5		98.83
F6		97.54
F7		98.74
F8		99.90

Drug content of all the formulations were carried out as per procedure in the methodology section.Drug content of all the formulations was found to be in the range 97.54%-99.90% as indicates in the table no.8.

In-Vitro Drug permeation data

% Cumulative drug release								
Time (hrs)	F1	F2	F3	F4	F5	F6	F7	F8
0	0	0	0	0	0	0	0	0
1	5.17	5.56	4.10	5.18	6.01	3.94	8.80	5.76
2	12.02	8.61	7.25	7.93	13.42	6.15	16.51	7.51
3	16.54	13.25	10.93	12.45	25.08	9.37	29.72	11.05
4	25.16	19.13	12.28	17.62	32.75	11.20	38.64	16.54
5	33.47	26.58	23.68	26.01	38.62	22.46	47.38	25.93
6	41.31	34.40	28.41	32.85	45.27	25.34	55.13	30.24
7	49.67	42.79	33.06	42.56	56.91	29.81	63.02	38.85
8	58.46	49.83	37.12	46.42	62.84	34.65	70.61	40.69

Table 9.% cumulative drug release data for F1 to F8

www.ijpar.com ~523~

Srikanth et al / Int. J. of Pharmacy and Analytical Research Vol-4(4) 2015 [518-525]

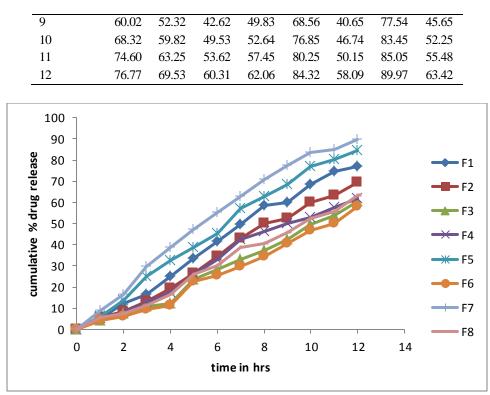


Figure 4: In vitro drug permeation graph

The optimized formulation F7 containing maximum concentration of span 20 and tween 20 showed highest % drug permeation at the end of 12 hrs and hence this formulation was selected as

optimized formulation for further study. It was reavealed that span 20 and tween 20 concentrations were having positive effect on the drug permeation through the membrane.

Release kinetics of optimized formulation

Table no10: Release kinetics of optimized formulation:						
	Zero order	First order	Higuchi	Peppas		
	% CDR Vs T	Log % Remain Vs T	% CDR Vs \sqrt{T}	Log C Vs Log T		
Slope	7.757527473	-0.14226443	29.57298225	1.343816675		
Intercept	4.671758242	2.272945911	-15.3200226	0.639814304		
Correlation	0.990176129	-0.82109574	0.976979985	0.908588553		
R 2	0.980448767	0.674198227	0.95448989	0.825533159		

CONCLUSION

Nystatin is categorized as antifungal drug and is successfully used to treat Fungal disorders. Nystatinmaximum wavelength is determined by UV-Visible spectrophotometer using 6.8 pH phosphate buffer and was detected to be 290 nm. Nystatinorganogels was formulated using light liquid paraffin as oil phase and emulsifying agents tween 20 and span 20 for emulsion and incorporated into gel using HPMC and carbopol 934 polymers in different ratios.The optimized formulation F7 showed a shear thinning with thixotropic property with better spreadability, viscosity and in-vitro permeability compared to other formulations. In the study it was observed that the concentrations of tween20 spann 20 and light liquid paraffin has shown effect on viscosity, spreadability and *in-vitro* drug permeability. Increased amount of liquid paraffin showed suppress activity of tween 20 and span 20. The surface morphology of the optimized formulation was observed by Scanning Electron Microscopic study. Thus Nystatin organo gels which could increase the drug permeability across the skin and

fast release of the drug could be successfully achieved.

REFERENCE

- [1]. ArunachalamA et al. Transdermal drug delivery systems: A review. Current Pharma Res 2010; 1(1): 70-81.
- [2]. Meera C Singh, Ajinkya S Naik, Sawant SD. Transdermal drug delivery system with major emphasis on transdermal patches. J Pharm Res 2010; 3(10): 2537-2543.
- [3]. Robinson JR, Lee VH. Controlled drug delivery fundamentals and applications. 2nd ed. New Delhi: CBS Publishers & Distributors; 2005; vol 29: 523-552.
- [4]. KottaKranthi Kumar, Sasikanth K, Sabareesh M, Dorababu N. Formulation and evaluation of diacerein cream. Asian J Pharm Clinical Res 2011; 4(2): 93-98.
- [5]. Jonathan Hadgraft, Richard H Guy. Transdermal drug delivery: development issues and research initiative. Marcel Dekker. Vol 35: 1-16.
- [6]. Divyesh Patel, Nirav Patel, MeghalParmar, NavpreetKaur. Transdermal drug delivery system: review. Int J BiopharmToxicol Res 2011; 1(1): 61-80.
- [7]. VirendraYadav. Transdermal drug delivery system: review. Int J Pharm Sci Res2012; 3(2): 376-382.
- [8]. Ankush I Shembale, Dipak K Borole, Rajesh T Lohiya. Useful permeation enhancers for transdermal drug delivery: A review. Int J Pharma Res Dev 2010; 2(5):1-6.
- [9]. Loyd VA, Nicholas GP, Ansel HC. Pharmaceutical dosage forms and drug delivery systems. 8th ed. Philadelphia: Lippincott Williams and Wilkins 2005; 298-315.
- [10]. Bhavsar JD, Brahambhatt VG, Patel MR, Patel KR, Patel NM. Review article: Novel approaches in semisolids. Int J Pharm World Res 2011; 2(1): 1-22.