

INTERNATIONAL JOURNAL OF PHARMACY AND ANALYTICAL RESEARCH

IJPAR |Vol.5 | Issue 4 | Oct - Dec -2016 Journal Home page: www.ijpar.com

Research article

Open Access

ISSN:2320-2831

Stability Indicating Analytical method development & Validation of 2, 4dihydroxy-5- Fluoro Pyrimidine in bulk drugs & its Injection formulation

S.Imampasha¹, Dr. Mohd. Ibrahim², Dr. V.Murali Balaram¹

^{*1}Department of Pharmaceutical Analysis & Quality Assurance, Sultan-Ul-Uloom College of Pharmacy, Banjara Hills, Hyderabad-500034, TS, India

²Department of Analytical Chemistry, Nizam Institute of Pharmacy Research Centre, Nalgonda T.S India *Corresponding Author: S. Imampasha

Email: impazam@gmail.com

ABSTRACT

Stability indicating HPLC method is developed for 2,4-dihydroxy-5-fluoropyrimidine bulk drug and its formulation, all validation parameters including specificity (interference, forced degradation), Precision (system, method, intermediate), Linearity, accuracy, range ,robustness studied, forced degradation (acid, base, peroxide, water, thermal ,humidity, photo stability effect studied for 2,4-dihydroxy-5-fluoropyrimidine,Retention time was found to be 3.4minutes at the wave length of 254nm.

INTRODUCTION

2,4-dihydroxy-5-fluoropyrimidine is an antimetabolite used in the cancer chemotherapy, Estimation of the drug in bulk drug industry and formulation sites by liquid chromatography is essential to maintain quality maintenance &for regulatory affairs to detect the quantity of the drug at bulk level &pharmaceutical formulation [1].

Chromatographic parameters

Column	:	250	х	4.6mm,	5	μm
(YMC Pack ODS or equiv	ale	ent to	L1)		
Flow rate	:	1.0 m	L/n	nin		
Wavelength	:2	254 n	m			
Injection Volume	:2	20 µL	,			

Column Temperature	: Ambient
Run time	: 20 minutes

MATERIALS & METHODS

Details of Chemicals

Fluorouracil Standard (Batch IOG371.USP Grade), Fluorouracil 50mg/ml (Batch IFU-319, Ingénues, ACN (Merck)

Instruments (Columns, serial no.):

HPLC

VLS-DR/HPLC/05 VLS-DR/HPLC/12 VLS-DR/HPLC/16

VLS-DR/HPLC/17

Analytical Balance

VLS-DR/BAL/01

pH Meter

VLS-DR/PHM/01

Preparation of Buffer

Accurately weigh about 6.8 gm of monobasic potassium phosphate and dissolve in 1 liter water. Adjust the pH of this solution to 5.7 with 5(M) Potassium hydroxide solution.

Preparation of Mobile Phase

Mix buffer and acetonitrile in the ratio of 95:5 % v/v.

Preparation of Standard solution

Accurately weigh and transfer about 10 mg of Fluorouracil standard into 100 mL volumetric flask, dissolve and dilute to the volume with diluent. Transfer 1 mL of this solution into a 10 mL volumetric flask, dissolve and dilute to volume with diluents.

Preparation of Sample

Take 1 mL of 50 mg /mL sample solution and transfer into a 50 mL volumetric flask, dissolve and dilute to volume with diluents. Transfer 1 mL of this solution into 100 mL volumetric flask, dissolve and dilute to volume with diluents [6].

Procedure:

Separately inject 20 μ L of blank (diluents), standard solution in five replicates, check standard once and sample solution (each preparation). Record the chromatograms and measure the area response for fluorouracil peak [7].

System suitability

RSD for Fluorouracil peak area from five replicate injections of standard solution should be not more than 0.73, Tailing factor for Fluorouracil peak area from standard solution should be not more than 1.5, Ratio between Standard and Check standard solutions should be between 0.98 to 1.02.

Validation Results[2.3.4]

System Suitability

As per methodology, injected blank, standard solution for five times and checks standard solution into HPLC system [8].

Specifity

Interference Study

As per methodology, injected blank, placebo solution once each and standard solution, sample solution and spiked sample solution and checked the peak interference of blank, placebo and impurities at the retention time of Fluorouracil and its Impurities. Prepared and injected each impurity at 1% level individually and checked the interference at each impurity retention time. If the degradation is not achieved at any of the condition, report the minimal values.

Precision

System Precision

As per methodology, injected blank and standard solution five times and check standard once into HPLC system.

Method Precision

Analyzed six test preparations of Fluorouracil injection 50 mg/mL as per the methodology and determined the % RSD of six sample preparations for Assay of Fluorouracil.

Linearity

Linearity for Fluorouracil was determined in the concentration range from 50 to 150 % levels of test concentration levels.

Accuracy

As per methodology, prepared and injected 50%, 100% and 150% level of target concentrations sample solutions of Fluorouracil and demonstrated the accuracy of the method. Calculated the system suitability parameters and % individual and % mean recovery at each level.

Range

From the results of Method Precision, Linearity and Accuracy it was concluded that the range of the Analytical method was established from 50 to 150% of target concentration.

Robustness (Effect of variation in PH)

System suitability preparation were analyzed as per the methodology at low PH (5.6) and high PH (5.8) variation in buffer.

Effect of Variation in Flow rate

System suitability preparations were analyzed as per the methodology at low column flow (0.9 mL/min) and high column flow (1.1 mL/min) variation in flow rate.

Effect of Variation in mobile phase composition:

System suitability preparations were analyzed as per the methodology at low mobile phase

composition (93:7) and high mobile phase composition (97:3) variation in mobile phase composition.

Effect of Variation in Column Oven Temperature

System suitability preparations were analyzed as per the methodology at high column oven temperature $(30^{\circ}C)$ variation in column oven temperature.

Stability of analytical solution

Stability study of standard solution and sample preparation were performed at room temperature and 2-8 °C conditions.

S.No	Type of Stress	Assay (%w/w)	Degradation (%w/w)	Purity 1Angle	Purity 1 Threshold	Peak Purity (Pass/Fail)
1	Acid	99.7	-	0.663	1.089	Pass
2	Base	96.6	-	0.635	1.079	Pass
3	Peroxide	80.4	-	0.653	1.117	Pass
4	Water	96.8	-	0.446	1.106	Pass
5	Thermal	98.8	-	0.454	1.089	Pass
6	Humidity	100.9	-	0.462	1.083	Pass
7	Photo stability	95.9	-	0.452	1.087	Pass

Table 1: Complete Degradation Data [5]

Table 2: Method precision Results

Sample	Assay(%w/w)
01	101
02	101
03	101
04	101
05	101
06	102
Average	101
S.D	0.4082
%RSD	0.4

Parameter	Analyst-1	Analyst-2
Column ID Number	USNH040034	H-15-07
HPLC ID Number	VLS-DR/HPLC/14	HP2 (Agilent 1100)
Date of Analysis	2015.03.16	2015.04.09

Table 3: Intermediate Precision

Table 4: Intermediate precision Results

Assay(%w/w)
102
102
102
101
102
101
102
0.516
0.5

Table 5: Precision and Intermediate Precision Method

Preparation	Analyst –I/Column-I/System-I
Sites	(Transferring site)
1	101
2	101
3	101
4	101
5	101
6	102
Avg	101
SD	0.4082
%RSD	0.4
%RSD(12 Prep)	0.5

Table 6: Linearity Results of Fluorouracil

Level	Fluorouracil	Fluorouracil	
	Concentration (ppm)	Peak Area	
50	5.501	268049	
80	8.801	430817	
100	11.002	539539	
120	13.202	644928	
150	16.503	805507	
Correlation Coefficient	1.0000		

Sample No	Spike level	Added (ppm)	Found (ppm)	'%' Recovery	'%' Mean recovery	%RSD
1	50%	5.005	5.071	101	101	0.0
2	50%	5.005	5.048	101		
3	50%	5.005	5.051	101		
4	50%	5.005	5.060	101		
5	50%	5.005	5.070	101		
6	50%	5.005	5.048	101		
1	100%	10.010	9.893	99	99	0.0
2	100%	10.010	9.891	99		
3	100%	10.010	9.887	99		
1	150%	15.015	14.280	99	99	0.0
2	150%	15.015	14.890	99		
3	150%	15.015	14.883	99		
4	150%	15.015	14.897	99		
5	150%	15.015	14.903	99		
6	150%	15.015	14.839	99		

Table7: Accuracy of Fluorouracil (Assay)

Table 8: Effect of Variation in Flow rate

Parameter	Tailing Factor	% RSD	Ratio between Standard and Check standard
Low flow	1.3	0.14	1.00
(0.9 mL/min)			
High flow	1.3	0.09	1.00
(1.1 mL/min)			
Acceptance Criteria	NMT 1.5	NMT 0.73	Between 0.98 to 1.02

Auto-Scaled Chromatogram

Spectra.2: Typical chromatogram of Sample

Spectra.3: Typical chromatogram of Base stress Sample

Spectra.4: Typical chromatogram of Thermal stress Sample

Auto-Scaled Chromatogram 0.08 uorouracii - 3.504 0.06 ₹ 0.04 0.02 0.00 0.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50,00 55.00 60.00 5.00 Mnutes Sample Name Sample-Humidity Condition; Vial 11; Injection 1

Spectra.5: Typical chromatogram of Humidity stress Sample

CONCLUSION

Analytical method was developed for estimation of 2,4-dihydroxy-5-fluoropyrimidine in bulk drug &its formulation ,validated for all the parameters . Hence, it was concluded that the analytical method is specific, precise, linear, accurate, rugged and robust. Hence, the present analytical method proved as stability indicating the results were within the acceptance criteria therefore can be used for regular analysis in Pharmaceutical bulk drug industry and at the formulation manufacturing industry for drug estimation ,There is no interference of exceptents in the injection formulation such as diluents, solubulizers etc

Acknowledgement

I convey my sincere thanks to Dr.B .Bhanu Teja, Dr.Srikanth U Allamraju, TherDose Pharma Pvt .Ltd, Hyderabad, Telangana, India, for the support and guidance for providing all the facilities by enabling me to complete this work at such a caliber.

REFERENCES

 Bakshi M, Singh S., Development of validated stability-indicating assay methods-critical review. J Pharma Biomed Anal. 28, 2002, 1011–40.

- [2]. ICH, Stability testing of new drug substances and products. Geneva: International Conference on Harmonization, IFPMA; 2003.
- [3]. ICH, Stability testing: Photo stability testing of new drug substances and products .Geneva: International Conference on Harmonization, IFPMA; 1996.
- [4]. Gerber, F.; Krummen, M.; Potgeter, H.; Roth, A.; Siffrin, C.; Spoendlin, C. "Practical aspects of fast reversedphase high-performance liquid chromatography using 3µm particle packed columns and monolithic columns" 2004.
- [5]. Ettre, C.Milestones in Chromatography: The Birth of Partition, Chromatography". LCGC. 19(5), 2001, 506–512. Retrieved 2016-02-2
- [6]. Henry, Richard A. "The Early Days of HPLC at DuPont". Chromatography Online. Avanstar Communications Inc, 2009.
- [7]. Giddings, J. Calvin Dynamics of Chromatography, Part I. Principles and Theory. Marcel, Dekker, Inc., New York. 1965, 281
- [8]. V. R. Sinha,^{*} R. V. Kumar, and J. R. Bhinge, A Stability-Indicating RP-HPLC Assay Method for 5-Fluorouracil, Indian journal of pharmaceutical Sciences 71(6), 2009, 630–637.