

INTERNATIONAL JOURNAL OF PHARMACY AND ANALYTICAL RESEARCH

ISSN: 2320-2831

IJPAR |Vol.3 | Issue 4 | Oct-Dec-2014 Journal Home page: www.ijpar.com

Research article

Open Access

Validated stability indicating RP-HPLC method for the simultaneous determination of ofloxacin, ornidazole, clobetasol propionate, terbinafine hydrochloride, methyl paraben, propyl paraben in bulk and pharmaceutical dosage form

*Bommadevara. Priyanka, Dr. Sk. Abdul Rahaman

Department of pharmaceutical analysis, Nirmala College of Pharmacy, Acharya Nagarjuna University,

Mangalagiri, Guntur-522503, Andhra Pradesh, India

* Corresponding author: Bommadevara. Priyanka

E-mail id: bommadevara.priyanka@gmail.com.

ABSTRACT

A new simple, precise, accurate and selective RP-HPLC method has been developed and validated for simultaneous estimation of Ofloxacin (OFL) ,Ornidazole (ORD), Terbinafine hydrochloride (TFH) , clobetasol propionate(CLP) , Methyl paraben(MP) ,propyl paraben(PP) in bulk and pharmaceutical dosage forms. The method was carried out on a Zodiac C_{18} (250mm x 4.6mm, 5µm) column with a mobile phase consisting of Ortho phosphoric acid buffer, P^H 2.5 and Acetonitrile in the ratio (82:18v/v) and flow rate of 1ml/min .The detection was carried out at 255nm. The retention time for estimation of ofloxacin (0.712min), ornidazole(1.933min), Terbinafine hydrochloride (7.302min), clobetasol propionate (9.224min), Methyl paraben (4.074min), propyl paraben(7.926min) .The Linearity of proposed method was investigated in the range of 1-960 µg/ml with r² value for ofloxacin (0.999), ornidazole(0.999), Terbinafine hydrochloride (0.999), clobetasol propionate (0.998), Methyl paraben (0.998), propyl paraben(0.997) .The amount of drug estimated by the proposed method was found to be in good agreement with label claim. The developed method was validated for precision, accuracy, sensitivity, robustness and ruggedness. Hence it can be applied for routine analysis of titled drug in bulk and pharmaceutical formulations.

Keywords: ofloxacin, ornidazole, Terbinafine Hcl, Clobetasol propionate, methyl paraben, propyl paraben, RP-HPLC, Validation

INTRODUCTION Ofloxacin

Ofloxacin is a fluoro quinolone derivative. Chemically, it is (RS)-7-fluoro-2-methyl-6-(4-methylpiperazin-1yl)-10-oxo-4-oxa-1-azatricyclotrideca-5(13),6,8,11tetraene-11-carboxylic acid and it is used in the treatment of urinary tract, prostate, skin, and respiratory tract infections^[1]. Ofloxacin is also used as an antibacterial agent in the treatment of infections caused by a wide range of both Gram-positive and Gram-negative bacteria as well as Chlamydia infections^[2]. It is soluble in glacial acetic acid ,1,2 dichloromethane, chloroform ,carbon tetra chloride, slightly soluble in methanol and water ^[3]. The drug is official in Indian pharmacopoeia and approved in 1990

on December 28 by U.S- FDA [1].

Ornidazole

Ornidazole is chemically 1-chloro-3-(2-methyl-5-nitro-1H-imidazol-1-yl) propan-2-ol and it is a drug that

Clobetasol propionate

Clobetasol propionate (21-Chloro-9-fluoro-11 β -hydroxy-16 β -methyl-3, 20-dioxopregna-1, 4-dien-17-yl propanoate) is derivative of prednisolone with high glucocorticoid activity and low mineralocorticoid

activity. It is reported in pharmacopoeias such as BP and USP^[7, 8]. It is freely soluble in methylene chloride, soluble in methanol, sparingly in alcohol, very sparingly in water^[9].

cures some protozoan infections ^[4]. It has been

investigated for use in Crohn's disease after bowel

resection^[5]. It is soluble in chloroform and methanol^[6].

clobetasol propionate

Terbinafine hydrochloride

Terbinafinehydrochloride(TFH) isasynthetic allylamine antifungal. chemically it is [(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)(naphthalen-1-ylmethyl) amine^[10]. It is freely soluble

in methanol and dichloromethane, soluble in ethanol, and slightly soluble in water and it is used in the treatment of skin diseases ^{[10].} The drug is official in British pharmacopoeia and approved in 1996 by U.S-FDA^[10]

www.ijpar.com ~ **302~**

Methyl Paraben

Parabens are commonly used as preservatives in pharmaceutical, because of their anti-fungal and antibacterial properties. It is methyl ester of p-hydroxy benzoic acid; IUPAC Name is Methyl 4-

Propyl paraben

Parabens are commonly used as preservatives in pharmaceutical. Propyl paraben is an n-propyl ester of *p*-hydroxybenzoic acid; IUPAC name is

propyl 4-hydroxybenzoate ^[13]. It is soluble in Acetone, Ethanol, Ether, Propylene Glycol and insoluble in Water ^[14].

hydroxybenzoate. Methyl paraben is an anti-fungal

agent often used in a variety of cosmetics and

pharmaceutical products ^[11]. Freely soluble in water,

sparingly soluble in ethanol (95%)^[12].

In Literature survey revealed that RP-HPLC methods were reported for Ofloxacin and Ornidazole ^[15]. RP-HPLC method for determination of clobetasol propionate ^[16] and Terbinafine Hcl ^[17] alone. Assay ^[18]

HPLC method for determination of clobetasol propionate ^[16] and Terbinafine Hcl ^[17] alone. Assay ^[18] and Evaluation methods ^[19] by using HPLC were reported for determination of Methyl paraben and Propyl paraben in pharmaceutical and cosmetic products. However, no reports are been found in the literature for the simultaneous determination of Ofloxacin, Ornidazole, Terbinafine Hcl , Clobetasol propionate, Methyl paraben ,Propyl paraben in Pharmaceutical preparations.

MATERIALS AND METHODS

Chemicals

Ofloxacin ,Ornidazole, Terbinafine Hcl ,Clobetasol propionate was gifted by Darwin Formulations Pvt Ltd ,Vijayawada , AP. Methyl paraben ,Propyl paraben and HPLC grade water from Cystron Pharmaceuticals. Methanol (HPLC grade), Acetonitrile (HPLC grade), Ortho Phosphoric Acid (HPLC grade) were purchased from Merck (Mumbai).

Instrumentation

 CH_3

Analysis was performed on Waters HPLC 717 plus with UV Detector and Waters HPLC 996 with PDA Detector, equipped with auto sampler and Zodiac C_{18} column compartment with Empower 2 software. Other equipment used in the study was Analytical Balance (DENVER) and Ultra Sonic bath.

Chromatographic Conditions

Zodiac C_{18} column (50mm x 4.6mm, 5µm) was used for chromatographic separation.The mobile phase composed of Ortho phosphoric acid buffer and Acetonitrile in the ratio (82:18v/v); at a flow rate of 1ml/min with run time 15mins.The detection of drugs was carried out at 255nm.

Method development Preparation of Buffer:

1ml Ortho Phosphoric Acid in 1 litre water, Filtered and degas.

Preparation of Diluent: Methanol was used as a diluent.

Preparation of standard Solutions

30 mg of ofloxacin, 80 mg of ornidazole, 16 mg of

clobetasol propionate, 30 mg of Terbinafine Hcl, 80 mg of methyl paraben, 8mg of propyl paraben working standards was weighed accurately in a100ml volumetric flask. To this 50ml of methanol was added and sonicated to dissolve, and then it was made up to 100ml. Further 5ml of the above obtained solution was taken and diluted to 50ml with Methanol .Standard was prepared by adding 5ml of each 6 solutions to 50 ml volumetric glass and diluted up to the mark.

Standard stock solutions of 30 mg of OFL , 80 mg of ORD, 16 mg of CLP, 30 mg of TFH , 80 mg of MP and 8mg of PP were prepared using Methanol as diluent . The stock solutions were diluted with diluent (Methanol) to give working standard solutions containing OFL(8-96 μ g/ml), ORD(80-960 μ g/ml), CLP(1-20 μ g/ml), TFH(29-348 μ g/ml), MP(8-96 μ g/ml), PP(1-9.72 μ g/ml) concentrations. These solutions were filled into vials and placed in vial holder. The linearity was determined separately for OFL, ORD, CLP, TFH, MP, and PP by injecting eight concentrations of drug prepared in diluent and calibration curve was constructed by plotting area against the respective concentrations.

VALIDATION METHOD

The HPLC method was validated in accordance with ICH guidelines. The system precision of the method was verified by six replicate injections of standard solution containing OFL, ORD, CLP, TFH, MP, and PP. The method precision was carried out for the analyte six times using the proposed method. Repeatability was measured by multiple injections of homogenous sample of OFL, ORD, CLP, TFH, MP, and PP. Accuracy was carried out by percentage recovery studies at three different concentration levels. To the pre-analyzed sample solution of OFL, ORD, CLP, TFH, MP, PP and a known amount of standard drug powders of OFL, ORD, CLP, TFH, MP, and PP were added at 50, 100, 150% level. Sensitivity of the proposed method was estimated in terms of limit of detection (LOD) and limit of quantification (LOQ) and was determined using the formulae; LOD =3.3 \times ASD/S and LOQ = $10 \times ASD/S$, where, ASD is the average standard deviation and S is the slope of the line.

The robustness of the method was studied for the sample. Ruggedness of the method was performed by

two different analysts using same experimental and environmental conditions. It was performed by 50μ g/ml. The system suitability parameters such as number of theoretical plates and tailing factor were studied. Stability of sample solution was established by the

stability of sample solution was established by the storage of sample solution at 25° c for 24hr and sample was reanalyzed after 24 hr. Sample solution was reanalysed after 12 hrs and 24 hrs time intervals and assay was determined for these Drug samples.

Analysis of formulation

1000mg of cream (TERBIFORCETM-PLUS) was weighed accurately in a 25ml volumetric flask. To this 15ml of methanol was added and sonicated to dissolve, and then make up to the mark. The obtained solutions were filtered through 0.45 μ Nylon syringe filter. Further the 5ml was transferred into a 50ml calibrated flask and diluted to volume with Methanol and volume was made up to the mark with diluent to obtain a concentration of OFL (8 µg/ml), ORD (8 µg/ml), CLP (1 µg/ml), TFH (29 µg/ml), MP (8 µg/ml), PP (1 µg/ml) which was then subjected to proposed method and the amounts of OFL, ORD, CLP, TFH, MP, and PP were determined using calibration curves.

Forced Degradation Studies

The specificity of the method was demonstrated through forced degradation studies conducted on the sample using acid, alkali, oxidative, reductive, thermal, photolytic, Heat, Humidity, Hydrolysis in order to evaluate the ability of the proposed method to separate OFL, ORD, CLP, TFH, MP, PP from both known and unknown degradation product.

Acid degradation was conducted using 1g of sample in a 25ml volumetric flask, 2mL of 5N hydrochloric acid, and alkali degradation was carried out in 2mL of 5N sodium hydroxide, 20ml of diluent was added. The stressed solutions were kept in water bath for 10min and cooled to room temperature (RT), neutralized and then diluted by diluent.

Oxidation degradation was performed by adding 3mL of 30% H_2O_2 .

For reduction 5ml of 10% sodium bicarbonate was added and kept in water bath for 30min, and cooled to Room Temperature, then diluted by using diluent.

For photolytic degradation sample solution was kept in sunlight for 1hr and then diluted by diluent.

For humidity 5g of sample solutions were kept at 105°C in oven for 1hr, and diluted by using diluent.

For heat degradation study sample solutions were heated on mantle at 60°C for 30 mins and diluted by using diluent.

Hydrolysis degradation study to sample solutions 5ml of water and 30ml of diluent and kept on water bath for half an hour and diluted by using diluent.

For thermal studies, 30 ml of diluent was heated on water bath for 60 min and diluted by using diluent.

RESULTS

The proposed chromatographic system was found suitable for effective separation and quantitation of OFL (0.712min), ORD (1.933min), TFH (7.302min), CLP (9.224min), MP (4.074min), and PP (7.926min) with good resolution, peak shapes and minimal tailing. The overlay UV spectra and typical chromatogram was shown in figure 1 and 2.

The individual chromatograms for OFL, ORD, CLP, TFH, MP and PP were shown in Figure 3, 4, 5, 6, 7, 8. The drugs was found to give linear detector response in the concentration range under study with correlation coefficient of 0.997 -0.999.The samples had followed linearity in the concentration range of OFL(8-96 μ g/ml), ORD(80-960 μ g/ml), CLP(1-20 μ g/ml), TFH(29-348 μ g/ml), MP(8-96 μ g/ml), PP(1-9.72 μ g/ml) were shown in Figure 9, 10,11, 12, 13,14. Percent recoveries for OFL (99.9-101.3%), ORD (99.9-100.7%), CLP (100-101.4%), TFH (99.8-100.7%), MP (99-101.8%), PP (100-100.9%).

The method precision and inter-day precision were evaluated on the basis of % RSD value and found to be in the range 0.316-1.08. As the RSD values were < 2%, the developed method was found to be precise(Table 1).The accuracy of the method studied at three different concentration levels i.e. 50, 100, 150% showed acceptable recoveries in the range of 99-101.8% (Table 2).The LOD for OFL (1.83 µg/mL), ORD (9.52 µg/mL), CLP (0.566 µg/mL), TFH (4.37 µg/mL), MP (1.66 µg/mL) and PP (0.123 µg/mL). Further the LOQ for OFL (5.57) µg/mL, ORD (28.8) µg/mL, CLP (1.717) µg/mL, TFH (13.26) µg/mL, MP (5.035) µg/mL and PP (0.374) µg/mL respectively.

Robustness of the method was studied by making deliberate changes in the chromatographic conditions like flow rate (\pm 0.2 mL/min), wave length (\pm 5nm) and

mobile phase composition (\pm 5%). The validation parameters were summarized in (Table 3).

The results of robustness study of the developed method was validated by change in flow rate ,change in wave length and change in mobile phase ratio and the % RSD of those variations are less than 2 (Table 4). When the method was performed by two different analysts under the same experimental and environmental conditions it was found to be rugged and % RSD (<2%) indicating ruggedness of the method.

The system suitability parameters such as number of theoretical plates and tailing factor were studied. Stability of sample solution was established by the storage of sample solution at 25° c for 24hr and sample was reanalyzed after 24 hr and assay was determined. The results were shown in (Table 6), Results of Forced degradation studies were shown in (Table 7).

Six replicates of sample solutions containing of OFL (8 μ g/mL), ORD (8 μ g/mL), CLP (1 μ g/mL), TFH (29 μ g/mL), MP (8 μ g/mL), and PP (1 μ g/mL) were injected for quantitative analysis. The amounts of OFL, ORD, CLP, TFH, MP, and PP were found to be 101.3, 99.5, 102, 98, 100.5 and 101% respectively. A good separation and resolution of both drugs indicates that there was no interference from the excipients commonly present in pharmaceutical combined dosage formulations. The results were shown in (Table 5).

DISCUSSION

The developed method was found suitable for simultaneous estimation of OFL, ORD, CLP, TFH, MP and PP with good peak shapes and minimal tailing. The peak area of the drugs was reproducible as indicated by low coefficient of variance indicating the repeatability of the proposed method. High correlation coefficient of 0.998 showed the stable linear detector response in different concentration range.

The proposed method was validated as per ICH guidelines. The method exhibited good selectivity and sensitivity. Percent recoveries for OFL (99.9-101.3%), ORD (99.9-100.7%), CLP (100-101.4%), TFH (99.8-100.7%), MP (99-101.8%), PP (100-100.9%).LOD and LOQ values indicate high sensitivity of the proposed method. The %RSD values of less than 2 for intra and inter day variation studies indicated that the proposed was precise. The developed method was studied for percentage recovery at three concentration levels and

%RSD values of less than 2 were found which were in acceptable limits indicates the method was accurate. Low %RSD values of less than 2 in variation of flow rate, wave length and mobile phase ratio indicates the method was robust. When the method was performed by two different analysts under the same experimental and environmental conditions and %RSD was found to be less than 2 indicating the ruggedness of the proposed method. The results from solution stability experiments confirmed that sample was stable up to 24 hr. during assay determination. The sample recoveries of OFL, ORD, CLP, TFH, MP and PP from the commercial ointment dosage form were in good agreement with respective label claim indicating that there were no interferences from the commonly used excipients and buffer used in analysis.

	ME	THOD PRI	ECISION	1		INTER	DAY PRECISIO	DN
S.No	(OFL ORD			OFL	ORD		
	RT	Area	RT	Area	RT	Area	RT	Area
1	0.718	4668006	1.763	6571429	0.702	4176605	1.910	5780438
2	0.717	4610096	1.762	6540887	0.702	4244423	1.906	5871623
3	0.715	4571376	1.745	6427233	0.699	4170094	1.904	5767214
4	0.718	4471493	1.763	6326667	0.701	4168076	1.907	5765667
5	0.717	4543521	1.753	6462119	0.704	4255283	1.907	5875064
6	0.719	4613446	1.770	6556781	0.707	4211807	1.910	5805109
Mean		4579656		6480853		4204381		5810853
$\pm SD$		0.141		0.126		0.082		0.219
% RSD		0.14		0.13		0.08		0.22

TABLE 1: PRECISION OF DEVELOPED METHOD

	ME	ГНОD PR	ECISIO		INTERDAY PRECISION				
S.No	C	CLP	1	TFH			TFH		
	RT	Area	RT	Area	RT	Area	RT	Area	
1	9.713	326852	7.317	3822343	9.184	264766	7.277	3275140	
2	9.703	325167	7.311	3802658	9.186	270259	7.267	3322543	
3	9.681	356316	7.286	3900711	9.190	264838	7.280	3269665	
4	9.687	325110	7.282	3935832	9.182	263739	7.274	3265499	
5	9.735	326092	7.318	3880806	9.191	269729	7.280	3333311	
6	9.696	327054	7.283	3894305	9.191	267002	7.280	3243003	
Mean		331098		3872776		266722		3284860	
$\pm SD$		0.699		0.121		1.082		0.234	
% RSD		0.7		0.12		1.08		0.23	

Bommadevara. Priyanka, et al/Int. J. of Pharmacy and Analytical Research Vol-3(4) 2014 [301-318]

	ME	THOD PRI	ECISION	INTERDAY PRECISION				
S.No	MP		MP PP		MP		РР	
	RT	Area	RT	Area	RT	Area	RT	Area
1	4.177	5196486	7.996	474319	3.927	4772412	7.881	577887
2	4.178	5170506	7.990	469354	3.923	4843170	7.882	587880
3	4.113	5071282	7.970	472595	3.923	4757848	7.884	575943
4	4.242	4984933	9.986	461749	3.923	4755849	7.879	576470
5	4.234	5059011	8.029	485646	3.926	4855794	7.887	588184
6	4.323	5148416	8.00	472302	3.929	4799092	7.885	580113
Mean		5105106		4797361		4797361		581080
$\pm SD$		0.16		0.316		0.138		0.344
% RSD		0.16		0.32		0.14		0.34

TABLE 2: ACCURACY DATA

% Level of recovery	Area	Amount of sample added (µg/ml)	Amount of API added (µg/ml)	Amount found (µg/ml±SD)	Recovery %±SD	%RSD
		OFL				
50%	1997309	740	380	1120	100.8	
	2007584	740	380	1120	101.3	0.52
	1987413	740	380	1120	100.3	
100%	3822894	740	740	1480	100.4	
	3856737	740	740	1480	99.9	0.310
	4168559	740	740	1480	99.9	
150%	5753981	740	1100	1840	100.3	
	5674962	740	1080	1820	100.6	0.250
	5802068	740	1100	1840	100.2	
		ORD				
50%	2713513	1950	970	2920	100.7	
	2746435	1950	975	2925	99.9	0.410
	2706202	1950	980	2930	100.4	
100%	5443435	1950	1950	3900	100.5	
	5446624	1950	1950	3900	100.0	0.23
	5489990	1950	1950	3900	100.3	
150%	8812268	1950	3160	5110	100.4	
	8749680	1950	3100	5050	100.3	0.050
	8973843	1950	3150	5100	100.3	
		CLP				
50%	116679	420	210	630	100.0	
	118193	420	205	625	100.0	0
	114709	420	211	631	100.0	

100%	234724	420	419	839	100.0	
	238125	420	420	840	100.0	0
	241984	420	421	841	101.4	
150%	395580	420	630	1050	100.0	
	391541	420	631	1051	101.2	0.77
	478105	420	632	1052	100.3	
% Level of	Area	Amount of sample	Amount of API	Amount	Recovery	%RSD
recovery		added	added	found	%±SD	
		(µg/ml)	(µg/ml)	(µg/ml±SD)		
		TFH				
50%	1533872	730	400	1130	100.5	
	1528082	730	390	1120	100.1	0.320
	1510038	730	410	1140	100.7	
100%	2779055	730	729	1459	99.8	
	2768592	730	730	1460	99.9	0.150
	2848790	730	730	1460	100.1	
150%	4697022	730	1100	1830	100.0	
	4670484	730	1080	1810	100.2	0.200
	4752992	730	1100	1830	100.4	
		MP				
50%	2209976	200	110	310	101.0	
	2436773	200	100	300	101.8	0.470
	2205330	200	110	310	101.0	
100%	4335272	200	200	400	99.5	
	4333110	200	210	410	99.0	0.77
	4393648	200	200	400	100.5	
150%	7039035	200	300	500	100.6	
	7008323	200	310	510	100.3	0.470
	7192234	200	300	500	99.7	
		PP				
50%	220691	20	10	30	100.0	
	220789	20	11	31	100.9	0.530
	217683	20	10	30	100.9	
100%	423475	20	20	40	100.0	
	426509	20	21	41	100.5	0.280
	434890	20	22	42	100.5	
150%	647841	20	30	50	100.3	
	640313	20	31	51	100.0	0.310
	652103	20	32	52	100.6	
			-	-		

Bommadevara. Priyanka, et al/Int. J. of Pharmacy and Analytical Research Vol-3(4) 2014 [301-318]

PARAMETER	OFL	ORD	CLP	TFH	MP	РР
Range (µg/ml)	8 -96	80 -960	1 -20	29 - 348	8 -96	1 -9.72
Slope	48218	7050	15443	9726	57239	56780
Intercept	91029	24359	7584	23790	28957	3783
Correlation coefficient (R ²)	0.999	0.999	0.998	0.999	0.998	0.9997
Retention time	0.712	1.933	9.224	7.302	4.074	7.926
Precision (intra and inter day)%	<2	<2	<2	<2	<2	<2
RSD						
Accuracy	99.9 -	99.9 -	100 -	99.8 -	99.0 -	100.0 -
	101.3	100.7	101.4	100.7	101.8	100.9
LOD(µg/ml)	1.83	9.52	0.566	4.37	1.66	0.123
LOQ(µg/ml)	5.57	28.8	1.717	13.26	5.035	0.374
Tailing factor	1.08	1.07	1.06	1.18	1.09	1.15
Theoretical plates	833	1077	85275	44830	3361	54056
Resolution	-	7.29	9.66	15.07	8.18	4.44

TABLE 3: VALIDATION AND SYSTEMSUITABILITY PARAMETERS

 TABLE 4: INFLUENCE OF FLOW RATE, WAVELENGTH AND MOBILE COMPOSITION

 ON ANALYTICAL PARAMETERS

			UT THE			
Parameter		0FL				ORD
	RT	Area	Tailing	RT	Area	Tailing
Flo	w rate(±	0.2ml/min))			
0.8	0.886	5378272	1.15	2.31	8439366	1.23
1	0.888	4444563	1.17	2.31	6948836	1.28
1.2	0.615	3885043	1.35	1.53	5702432	1.25
W	ave leng	gth(±5nm)				
250	0.69	4166848	1.08	1.90	5925415	1.07
255	0.70	4357204	1.07	1.92	6054390	1.06
260	0.69	3690713	1.09	1.90	5911387	1.07
	Mobil	e phase cor	nposition	(±5%v	/v)	
13:87	0.75	4190353	1.14	2.15	7160699	1.22
18:82	0.68	3960273	1.32	1.56	5554167	1.34
23:77	0.68	4765060	1.27	1.58	6697843	1.26

Parameter		CLP				TFH
	RT	Area	Tailing	RT	Area	Tailing
Flow rate(±0.2ml/min)						
0.8	11.3	425058	1.21	8.72	4774015	1.43
1	11.3	306456	1.20	8.78	3497545	1.37
1.2	8.60	311870	1.18	6.30	3295554	1.47
Wa	we leng	gth(±5nm)				
250	9.18	330666	1.08	7.27	5735624	1.17
255	9.21	332366	1.08	7.29	5612004	1.18
260	9.18	216823	1.06	7.27	3028708	1.17

Μ	lobile p	hase comp	osition		(±5%v/v	·)			
13:87	9.90	355878	1.17	7.45	3940594	1.43			
18:82	9.53	256300	1.19	7.07	2854477	1.39			
23:77	9.43	347157	1.17	7.05	3969105	1.54			
Parameter		MP				PP			
	RT	Area	Tailing	RT	Area	Tailing			
Flow rate (±0.2ml/min)									
0.8	5.57	6598819	1.18	9.57	602582	1.22			
1	5.56	5537080	1.20	9.60	537696	1.22			
1.2	3.61	4520476	1.20	6.94	409664	1.19			
Wa	ave leng	gth (±5nm)							
250	3.92	4308864	1.10	7.88	524094	1.16			
255	4.05	4402242	1.09	7.91	531981	1.15			
260	3.92	4561884	1.10	7.88	548739	1.16			
Μ	lobile p	hase comp	osition		(±5%v/v	·)			
13:87	5.55	5571100	1.13	8.25	500453	1.22			
18:82	3.47	4522014	1.25	7.74	443906	1.18			
23:77	3.50	5402192	1.22	7.74	496287	1.21			

Bommadevara. Priyanka, et al/Int. J. of Pharmacy and Analytical Research Vol-3(4) 2014 [301-318]

TABLE 5: ASSAY OF COMMERCIAL FORMULATION

Drug	Label claim(mg/tablet) Calculated value		% of Assay
		(ml±SD/tablet)	
OFL	0.75	0.76	101.3%
ORD	2	1.99	99.5%
CLP	0.05	0.0510	102 %
TFH	1	0.98	98 %
MP	0.2	0.201	100%
PP	0.02	0.0202	101%

TABLE 6: Stability Studies

S.NO	Drug	Stability	RT	Area	USP Tailing	USP Plate count				
1	OFL		0.701	4228339	1.16	835				
2	ORD		1.907	5840453	1.08	1080				
3	CLP	24hrs	9.183	268832	1.07	83292				
4	TFH		7.271	3285903	1.20	42122				
5	MP		3.925	4808694	1.10	3270				
6	PP		7.879	583001	1.15	54822				
S.NO	Drug		RT	Area	USP Tailing	USP Plate count				
1	OFL		0.703	3969525	1.12	858				
2	ORD	12 hrs	1.913	5792163	1.07	1095				
3	CLP		9.183	265519	1.05	83316				
4	TFH		7.273	3236684	1.20	42301				
5	MP		3.946	4764552	1.10	3309				

6	PP		7.882	578147	1.15	55162
S.NO	Drug		RT	Area	USP Tailing	USP Plate count
1	OFL		0.708	4028958	1.07	841
2	ORD		1.925	5805037	1.07	1108
3	CLP	0 hrs	9.203	261599	1.07	85588
4	TFH		7.291	3179164	1.16	42561
5	MP		4.003	4757799	1.10	3353
6	PP		7.905	573931	1.15	56341

Bommadevara. Priyanka, et al/Int. J. of Pharmacy and Analytical Research Vol-3(4) 2014 [301-318]

TABLE 7: Forced Degradation studies

Parameter	Sample wt(mg)		Area counts		%label claim		%degradation	
	ORD	OFL	ORD	OFL	ORD	OFL	ORD	OFL
Control	9682	982.2	3421249	3421249	10%	100%	90	0
Acid	895.1	907.5	2530272	2530272	80.1	80	19.9	20
Alkali	891.7	905.4	2520729	2520729	80.1	79.9	19.9	20.1
Peroxide	962.8	978.2	2722021	2722021	80.1	79.9	19.9	20.1
Reduction	1108.1	1124.1	3125535	3125535	79.9	79.8	20.1	20.2
Thermal	906.3	915	2547245	2547245	79.6	79.9	20.4	20.1
Photolytic	1079.5	1088.3	3037092	3037092	79.7	80.1	20.3	19.9
Humidity	1095.6	1109.5	3083741	3083741	79.7	79.8	20.3	20.2
Hydrolysis	1110.2	1130.4	3144375	3144375	80.2	79.9	19.8	20.1
Heat	1115.5	1128.5	3144375	3144375	79.8	80	20.2	20

Parameter	Sample wt(mg)		Area counts		%label claim		%degradation	
	CLP	TFH	CLP	TFH	CLP	TFH	CLP	TFH
Control	822.2	728.1	3421249	3421252	100	99.6	0	0.4
Acid	760.1	682.2	2530272	2530272	80	78.5	20	21.5
Alkali	759.2	686.3	2520729	2520729	79.8	77.8	20.2	22.2
Peroxide	820.2	745.6	2722021	2722021	79.8	77.3	20.2	22.7
Reduction	945.2	844.5	3125535	3125535	79.5	78.4	20.5	21.6
Thermal	768.1	685.2	2547245	2547245	79.7	78.7	20.3	21.3

Photolytic	915.6	810.3	3037092	3037092	79.7	79.4	20.3	20.6
Humidity	928.2	816.3	3083741	3083741	79.9	80	20.1	20
Hydrolysis	961.2	838.6	3144375	3144375	78.6	79.4	21.4	20.6
Heat	981.2	832.6	3144375	3144375	77	80	23	20
Parameter	Sample wt(mg)		Area counts		%label claim		%degradation	
	MP	PP	MP	PP	MP	PP	MP	PP
Control	979.2	1027.9	3421249	3421252	100.1	100	-0.1	0
Acid	905.5	1027.9	2530272	2530272	80.1	74	19.9	26
Alkali	903.7	1027.9	2520729	2520729	79.9	73.7	20.1	26.3
Peroxide	970.4	1027.9	2722021	2722021	80.4	79.6	19.6	20.4
Reduction	1120.1	1217.9	3125535	3125535	79.9	77.1	20.1	22.9
Thermal	915.2	1027.9	2547245	2547245	79.7	74.5	20.3	25.5
Photolytic	1090.5	11545.9	3037092	3037092	79.8	79.6	20.2	20.4
Humidity	1102.6	1155.9	3083741	3083741	80.1	80.5	19.2	19.8
Hydrolysis	1124.2	1215.9	3144375	3144375	80.1	77.7	19.9	22.3
Heat	1127.3	1217.9	3144375	3144375	79.9	77.6	20.1	22.4

Bommadevara. Priyanka, et al/Int. J. of Pharmacy and Analytical Research Vol-3(4) 2014 [301-318]

Figure 1: Overlay UV Spectra of Standard OFL, ORD, CLP, TFH, MP and PP

----- Propyl paraben

----- Clobetasol propionate

Figure 2: Typical HPLC chromatogram of OFL, ORD, CLP, TFH, MP and PP

0.40 ₹ 0.20 0.00 2.00 4.00 6.00 8.00 Minutes

Figure 5: Individual chromatogram of Clobetasol propionate

Figure 7: Individual chromatogram of Methyl paraben

Figure 8: Individual chromatogram of Propyl paraben

Figure 10: calibration curve for Ornidazole

Bommadevara. Priyanka, et al / Int. J. of Pharmacy and Analytical Research Vol-3(4) 2014 [301-318]

Figure 11: calibration curve for Clobetasol propionate

Figure 13: Calibration curve for Methyl paraben

Bommadevara. Priyanka, et al / Int. J. of Pharmacy and Analytical Research Vol-3(4) 2014 [301-318]

CONCLUSION

The low standard deviation and %RSD calculated for the proposed developed method and validation were in conformity with standards. The results of stress testing under taken according to the ICH guidelines reveal that the method is specific and stability indicating. Hence, it can be concluded that the developed RP-HPLC method is accurate, precise and selective and can be employed successfully for the simultaneous estimation of OFL, ORD, CLP, TFH, MP and PP in ointment dosage form for routine quality control analysis.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the staff and management of the Nirmala College of Pharmacy, Atmakuru (Guntur), Andhra Pradesh, India for providing necessary facilities to carry out the research work.

REFERENCES

[1] Web site

http://en.wikipedia.org/wiki/Ofloxacin

- [2] Monk J.P. and Campoli-Richards D.M., Ofloxacin: A review of its antibacterial activity, pharmacokinetic properties and therapeutic uses, Drugs. 1987, 33, 346-391.
- [3] http://www.who.int/medicines/services/expertcommittees/pharmprep/Ofloxacin-QAS10-359Rev1_6102010.pdf
- [4] http://en.wikipedia.org/wiki/Ornidazole
- [5] Rutgeerts P, Van Assche G, Vermeire S, *et al.* (April 2005). "Ornidazole for prophylaxis of postoperative Crohn's disease recurrence: a randomized, double-blind, placebo-controlled trial". Gastroenterology **128** (4): 856–61. doi:10.1053/j.gastro.2005.01.010.PMID 15825069
- [6] http://www.scbt.com/datasheet-205779-ornidazole.html
- [7] "British Pharmacopoeia", Vol-1, 2 & Vol-4, HMSO Publication, London, 1445-1450, 2718-2720, 10642
- [8] "United State Pharmacopoeia27, National Formulary 22", Asian Edition, 476-478
- [9] https://mc.usp.org/monographs/clobetasol-propionate-0-1
- [10] http://en.wikipedia.org/wiki/Terbinafine
- [11] http://en.wikipedia.org/wiki/Methylparaben
- [12] http://www.indiamart.com/gujarat-organics/methyl-paraben-chemicals.html
- [13] http://en.wikipedia.org/wiki/Propylparaben
- [14] http://www.scbt.com/datasheet-212598-propyl-paraben.html

Bommadevara. Priyanka, et al/Int. J. of Pharmacy and Analytical Research Vol-3(4) 2014 [301-318]

- [15] B.Dhandapani et. al. / METHOD DEVELOPMENT AND VALIDATION FOR THE SIMULTANEOUS ESTIMATION OF OFLOXACIN AND ORNIDAZOLE IN TABLET DOSAGE FORM BY RP-HPLC, International Journal of Pharma Sciences and Research (IJPSR) Vol.1(1), 2010, 78-83.
- [16] M.C. Fontana, M.O. Bastos, and R.C.R. Beck,* Development and Validation of a Fast RP-HPLC Method for the Determination of Clobetasol Propionate in Topical Nanocapsule Suspensions, Journal of Chromatographic Science, Vol. 48, September 2010, pg no 637-640.
- [17] Patel Krupa, K. A VALIDATED RP-HPLC METHOD FOR DETERMINATION OF TERBINAFINE HYDROCHLORIDE IN PHARMACEUTICAL SOLID DOSAGE FORM International Journal of Pharmacy & Technology; Oct2012, Vol. 4 Issue 3, p4663
- [18] S. Kumar*, S. Mathkar, C. Romero, and A.M. Rustum Development and Validation of a Single RP-HPLC Assay Method for Analysis of Bulk Raw Material Batches of Four Parabens that are Widely Used as Preservatives in Pharmaceutical and Cosmetic Products Journal of Chromatographic Science, Vol. 49, May/June 2011 pg no :405-411
- [19] Jan Šubert, Old Ĝich Farsa *, Marie Mareþková Stability Evaluation of Methyl paraben and Propyl paraben in their Solution Aqua Conservans Using HPLC, Scientia Pharmaceutica (Sci. Pharm.) 75, 171-177 (2007)