

INTERNATIONAL JOURNAL OF PHARMACY AND ANALYTICAL RESEARCH

Available Online at: www.ijpar.com

[Research article]

Synthesis, Anti-HIV activity and Cytotoxicity of N-Substituted Phthalimide derivatives

^{*1}P. Selvam, ²C.Pannecouque, ²E.De Clercq

¹Department of Pharmaceutical chemistry, Nova College of Pharmaceutical Education and Research, Ibrahimpatnam, Vijayawada, A.P.,India.

²Rega Institute for Medical Research, Katholieke Universiteit-Leuven. Minderbroederstraat 10, Leuven B-3000, Belgium.

ABSTRACT

A series of novel N-substituted phthalimide derivatives have been synthesized by condensation of phthalic anhydride and primary amines. Their chemical structures were assigned by means of spectral analysis (FT-IR and ¹H-NMR). Synthesized compounds were screened for antiviral activity against HIV-1 and -2 replication in MT-4 cells. Cytotoxicity was also investigated in uninfected MT-4 cells. All the synthesized compounds exhibited cytotoxicity in MT-4 cells (CC_{50} : 84-125 µg/ml).

KEYWORDS: N-Substituted phthalimide, Antiviral activity against HIV-1 and -2

INTRODUCTION

Phthalimide is a versatile lead molecule for the designing of potential therapeutic agents and its derivative, thalidomide used to treat various cancer, dermatological, neurological and inflammatory diseases¹. N-Substituted phthalimide derivatives were tested for anti-HIV activity^{2,3,4,5,6}, some of their derivatives have also shown significant activity against HIV virus replication and HIV Reverse Transcriptase enzymatic activity⁶. Phthalimide react with p-nitrobenzoyl chloride yields the P-nitrobenzoyl phthalimide. A series of novel N-substituted phthalimide derivatives have been synthesized by condensation of phthalic anhydride and compounds with primary aromatic amino group (Scheme-1). Present work is to investigate the anti-HIV activity and cytotoxicity of newly synthesized phthalimide derivatives by using MT-4/MTT assay.

Anti-HIV activity and Cytotoxicity

Synthesized compounds were tested for anti-HIV activity against the replication of HIV-1(III_B) and HIV-2(ROD) in MT-4 cells. Inhibitory effects of the compounds on HIV-1 and HIV-2 replication were monitored by inhibition of virus-induced cytopathic effect in MT-4 cells^{7,8}. Cytotoxicity of the compounds for mock- infected MT-4 cells was assessed by the MTT method. Anti-HIV activity and cytotoxicity of standard AZT were also performed by a similar method in MT-4 cells (Table 1). All synthesized compounds exhibited cytotoxicity in MT-4 cells (CC₅₀: 84-125 µg/ml) and compound PH-2A4PT (CC₅₀: 84 ±2.49 µg/ml) toxic in this series.

EXPERIMENTAL

Melting points were determined using open ended capillary tube method and are uncorrected. FT-IR

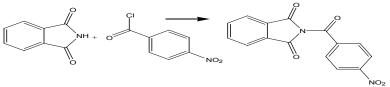
recorded on Perkin Elmer–1605 series FT-IR in KBr disc. ¹H NMR Spectra were recorded at 400 MHz on Bruker FT-NMR spectrophotometer.

Synthesis of P-nitrobenzoyl phthalimide (PH-PNBOC)

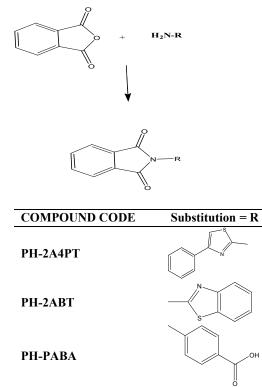
An equimolar (0.01 mol) mixture of phthalimide and p-nitrobenzoyl chloride was dissolved with 20 ml of pyridine and refluxed for 4 hrs. The mixture was cooled to room temperature and poured into crushed ice, filter and then washed with water. The solid thus obtained was recrystallized from ethanol.

2-(4-Nitrobenzoyl)-isoindole-1,3-dione(PH-PNBOC)

IR(KBr):1670(C=0),1596(C=C), 690 (Ar-H); PMR (DMSO-d₆): 7.2-8.2 (m, 8H, Ar-H).


Synthesis of N-substituted Phthalimide derivatives

An equimolar (0.01 mol) mixture of phthalic anhydride and aromatic primary amine containing compounds (2-amino-4-phenylthiazole, 2-aminobenzthiazole and p-amino- benzoic acid) was dissolved in 10 ml of glacial acetic acid refluxed for 6 hrs. The mixture was cooled to room temperature and poured into crushed ice, filter and then washed with water. The solid thus obtained was recrystallized from ethanol.


4-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-benzoic acid(PH-PABA):IR(KBr) :3134(OH), 1695(C=O), 1580 (C=C); PMR (DMSO-d₆): 9.02 (s,1H,-COOH), 6.5-7.8 (m, 8H, Ar-H).

2-Benzothiazol-2-yl-isoindole-1,3-dione(PH2ABT) :IR(KBr):1620(C=O),1566(C=N), 1510 (C=C), 670 (Ar-H); PMR (DMSO-d₆): 6.5-7.8 (m, 8H, Ar-H). 2-(2-Phenyl-thiazol-4-yl)-isoindole-1,3-dione(PH-2A4PT):IR(KBr):1690(C=O),1574(C=N),1526(C= C), 670 (Ar-H); PMR (DMSO-d₆): 6.5 (s, 1H, CHthiazole), 6.9-8.2 (m, 8H, Ar-H).

Synthesis of N-substituted phthalimide derivatives

Compound	M.P	Yield (%)	Strain	IC ₅₀ ^a (µg/ml)	СС ₅₀ ^b (µg/ml)
Phthalimide	-	-	III _B	>107.80	107.80±15.39
	-	-	ROD	>107.80	107.80±15.39
P-nitrobenzoyl chloride	-	-	III_B	>125	>125
	-	-	ROD	>125	>125
PH-PNBOC	210	67	III_B	>125	>125
	-	-	ROD	≥56.30	>125
PH-2ABT	243	62	III_B	>88.10	88.10±12.25
	-	-	ROD	>88.10	88.10±12.25
PH-2A4PT	205	56	III_B	>84.38	84.38±2.49
	-	-	ROD	>84.38	84.38±2.49
PH-PABA	278	74	III_B	>101	≥101
	-	-	ROD	>101	≥101
AZT (STD)	-	-	III_B	0.0015	>25
	-	-	ROD	0.0016	>25

Table 1. PHYSICAL, ANTI-HIV ACTIVITY DATA OF SYNTHESIZED COMPOUNDS

^a Concentrations required to inhibit the cytopathic effect of HIV-1(III_B) in MT-4 cells by 50%.

^b Concentrations required to cause cytotoxicity to 50% of the MT-4 cells.

whereas HIV-1 = (IIIB), HIV-2 = (ROD). All the value of SD of two independent experiments.

REFERENCES

- [1] N. Wines, Australian J Dermatol., 43 (2002), 229
- [2] P. Selvam, B. Abileshini, V. Alagarsamy, C. Pannecouque and E. De Clercq Indian Journal of Heterocyclic Chemistry 16, (2006), 73-74.
- [3] J.M. Hoffman, J.S. Wai, C.M. Thomas, R.B. Levin, J. A. O'Brien, M.E Goldman.J Med Chem. 16;35(21): (1992) 3784-91.
- [4] J. Vamecq, K. Van derpoorten, J. H. Poupaert, J. Balzarini, E. De Clercq, J. P. Stables. Life Sci. 63(19): (1998) PL267-74.
- [5] K. Van Derpoorten, J. Balzarini, E De Clercq, J. H. Poupaert, Biomedicine & Pharmacotherapy 51(10), (1997), 464–468.
- [6] Weerasak Samee, Jiraporn Ungwitayatorn, Chutima Matayatsuk and Jutarat Pimthon, Science Asia 30 (2004): 81-88
- [7] P. Selvam, M. Dinakaran, E. De Clercq, Biol. Pharm. Bul. 26: (2003), 1278-82.
- [8] K. Girija, P. Selvam, N. Nagarajan, E. De Clercq and V. Gopal. Indian Journal of Heterocyclic Chemistry, 14, (2005), 255-256.
