

International Journal of Pharmacy and Analytical Research (IJPAR)

ISSN: 2320-2831

IJPAR |Vol.11 | Issue 4 | Oct - Dec -2022 www.ijpar.com

Research article

Analytical research

Method development and validation of remogliflozin and tenligliptin by RP-HPLC

Shaik Abdul Vaseem*, Shyamala

Department of Pharmaceutical Analysis, Joginapally B. R. Pharmacy College, Moinabad, Hyderabad, Telangana-500075, India.

Address of Correspondence: Shailk Abdul Vaseem

ABSTRACT

A rapid and precise reverse phase high performance liquid chromatographic method has been developed for the validated of Remogliflozin and Teneligliptin, in its pure form as well as in tablet dosage form. Chromatography was carried out on a Zorbax C18 (4.6 x 150mm, 5 μ m) column using a mixture of Methanol: Phosphate Buffer pH 3.9 (55:45v/v) as the mobile phase at a flow rate of 1.0ml/min, the detection was carried out at 255nm. The retention time of the Remogliflozin and Teneligliptin was 2.061, 2.462 \pm 0.02min respectively. The method produce linear responses in the concentration range of 1-5 μ g/ml of Remogliflozin and 100-500 μ g/ml of Teneligliptin. The method precision for the determination of assay was below 2.0% RSD. The method is useful in the quality control of bulk and pharmaceutical formulations.

Keywords: Remogliflozin, Teneligliptin, RP-HPLC, validation.

INTRODUCTION

Chromatography is a laboratory technique for the separation of a mixture. The mixture is dissolved in a fluid called the mobile phase, which carries it through a structure holding another material called the stationary phase. The various constituents of the mixture travel at different speeds, causing them to separate. The separation is based on differential partitioning between the mobile and stationary phases. Subtle differences in a compound's partition coefficient result in differential retention on the stationary phase and thus affect the separation.^[1] Chromatography may be preparative or analytical. The purpose of preparative chromatography is to separate the components of a mixture for later use, and is thus a form of purification. Analytical chromatography is done normally with smaller amounts of material and is for establishing the presence or measuring the relative proportions of analytes in a mixture. The two are not mutually exclusive. [2] Chromatography is based on the principle where molecules in mixture applied onto the surface or into the solid, and fluid stationary phase (stable phase) is separating from each other while moving with the aid of a mobile phase. The factors effective on this separation process include molecular characteristics related to adsorption (liquid-solid), partition (liquid-solid), and affinity or differences among their molecular weights ^[1,2]. Because of these differences, some components of the mixture stay longer in the stationary phase, and they move slowly in the chromatography system, while others pass rapidly into mobile phase, and leave the system faster ^[3].

Based on this approach three components form the basis of the chromatography technique.

- > Stationary phase: This phase is always composed of a "solid" phase or "a layer of a liquid adsorbed on the surface a solid support".
- Mobile phase: This phase is always composed of "liquid" or a "gaseous component."
- > Separated molecules

The type of interaction between stationary phase, mobile phase, and substances contained in the mixture is the basic component effective on separation of molecules from each other. Chromatography methods based on partition are very effective on separation, and identification of small molecules as amino acids, carbohydrates, and fatty acids. However,

chromatographies affinity (ie. ion-exchange chromatography) are more effective in the separation of macromolecules as nucleic acids, and proteins. Paper chromatography is used in the separation of proteins, and in related to protein synthesis; gas-liquid chromatography is utilized in the separation of alcohol, esther, lipid, and amino groups, and observation of enzymatic interactions, while molecular-sieve chromatography is employed especially for the determination of molecular weights of proteins. Agarose-gel chromatography is used for the purification of RNA, DNA particles, and viruses [4]. Stationary phase in chromatography, is a solid phase or a liquid phase coated on the surface of a solid phase. Mobile phase flowing over the stationary phase is a gaseous or liquid phase. If mobile phase is liquid it is termed as liquid chromatography (LC), and if it is gas then it is called gas chromatography (GC). Gas chromatography is applied for gases, and mixtures of volatile liquids, and solid material. Liquid chromatography is used especially for thermal unstable, and non-volatile samples^[5]. The purpose of applying chromatography which is used as a method of quantitative analysis apart from its separation, is to achive a satisfactory separation within a suitable timeinterval. Various chromatography methods have been developed to that end. Some of them include column chromatography, thin-layer chromatography (TLC), paper chromatography, chromatography, ion exchange chromatography, chromatography, high-pressure liquid permeation chromatography, and affinity chromatography [6].

- Column chromatography
- Ion-exchange chromatography
- Gel-permeation (molecular sieve) chromatography
- Affinity chromatography
- Paper chromatography
- Thin-layer chromatography
- Gas chromatography
- Dye-ligand chromatography
- Hydrophobic interaction chromatography
- Pseudoaffinity chromatography
- High-pressure liquid chromatography (HPLC)

MATERIALS AND METHODS

Remogliflozin from Sura labs, Teneligliptin from Sura labs, Water and Methanol for HPLC from LICHROSOLV (MERCK), Acetonitrile for HPLC from Merck and Phosphate buffer from Sura labs.

HPLC METHOD DEVELOPMENT TRAILS

Preparation of standard solution

Accurately weigh and transfer 10 mg of Remogliflozin and Teneligliptin working standard into a 10ml of clean dry

volumetric flasks add about 7ml of Methanol and sonicate to dissolve and removal of air completely and make volume up to the mark with the same Methanol. Further pipette 0.03ml of Remogliflozin and 3.0ml of Teneligliptin from the above stock solutions into a 10ml volumetric flask and dilute up to the mark with diluents.

Procedure

Inject the samples by changing the chromatographic conditions and record the chromatograms, note the conditions of proper peak elution for performing validation parameters as per ICH guidelines.

Mobile Phase Optimization

Initially the mobile phase tried was Methanol: Water with varying proportions. Finally, the mobile phase was optimized to Methanol: Phosphate Buffer pH 3.9 in proportion 55:45 v/v respectively.

Optimization of Column

The method was performed with various columns like C18 column, Symmetry and X-Bridge. Zorbax C18 (4.6×150 mm, 5μ) was found to be ideal as it gave good peak shape and resolution at 1ml/min flow.

VALIDATION

PREPARATION OF BUFFER AND MOBILE PHASE Preparation of Phosphate buffer pH 3.9

Accurately weighed 6.8 grams of KH2PO4 was taken in a 1000ml volumetric flask, dissolved and diluted to 1000ml with HPLC water and the volume was adjusted to pH 3.9.

Preparation of mobile phase

Accurately measured 550 ml (55%) of Methanol and 450ml of Buffer (45%) were mixed and degassed in digital ultrasonicater for 10 minutes and then filtered through 0.45 μ filter under vacuum filtration.

Diluent Preparation

The Mobile phase was used as the diluent.

RESULTS AND DISCUSSION

Optimized Chromatogram (Standard)

Mobile phase : Methanol: Phosphate Buffer pH

3.9(55:45v/v)

Column : Zorbax C18 (4.6×150mm, 5.0 μm)

Flow rate : 1 ml/min
Wavelength : 255 nm
Column temp : 35°C
Injection Volume : 10 µl
Run time : 8minutes

0.30 0.20 0.10 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Minutes

Fig 1: Optimized Chromatogram (Standard)

Table 1: peak results for optimized

S. No	Peak name	$\mathbf{R}_{\mathbf{t}}$	Area	Height	USP Tailing	USP plate count	Resolution
1	Remogliflozin	2.061	247392	58952	1.2	7243	
2	Teneligliptin	2.462	3530866	371748	1.1	3389	2.1

From the above chromatogram it was observed that the Remogliflozin and Teneligliptin peaks are well separated and they shows proper retention time, resolution, peak tail and plate count. So it's optimized chromatogram.

Optimized Chromatogram (Sample

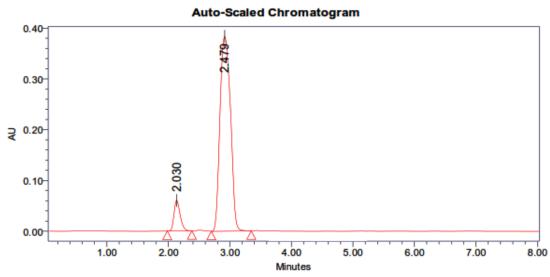


Fig 2: Optimized Chromatogram (Sample)

Table 2: Optimized Chromatogram (Sample)

S. No	Peak name	$\mathbf{R}_{\mathbf{t}}$	Area	Height	USP Tailing	USP plate count	Resolution
1	Remogliflozin	2.030	240019	60878	1.2	7246	_
2	Teneligliptin	2.479	3544380	384304	1.1	3375	2.0

- Theoretical plates must be not less than 2000
- Tailing factor must be not more than 2.
- It was found from above data that all the system suitability parameters for developed method were within the limit.

Specificity

The ICH documents define specificity as the ability to assess unequivocally the analyte in the presence of components that may be expected to be present, such as impurities, degradation products, and matrix components.

Analytical method was tested for specificity to measure accurately quantitate Remogliflozin and Teneligliptin in drug product.

Assay (Standard)

Table 3: Results of system suitability for Remogliflozin

S no	Name	Rt	Area	Height	USP plate count	USP Tailing
1	Remogliflozin	2.048	246713	73455	11318	1.1
2	Remogliflozin	2.074	245617	78152	7105	1.2
3	Remogliflozin	2.071	245830	78146	8974	1.2
4	Remogliflozin	2.069	240552	78242	7087	1.2
5	Remogliflozin	2.070	245725	77705	5124	1.2
Mean			244887.4			
Std. Dev			2462.26			
% RSD			1.005466			

[%] RSD of five different sample solutions should not more than 2

The %RSD obtained is within the limit, hence the method is suitable.

Table 4: Results of system suitability for Teneligliptin

S no	Name	Rt	Area	Height	USP plate count	USP Tailing	Resolution
1	Teneligliptin	2.446	3363754	636862	8484	1.1	2.0
2	Teneligliptin	2.490	3326434	641486	7889	1.0	2.2
3	Teneligliptin	2.489	3345949	638081	7846	0.9	2.1
4	Teneligliptin	2.488	3336621	617725	6772	0.9	2.1
5	Teneligliptin	2.490	3355244	631710	6884	0.9	2.1
Mean			3345600				_
Std. Dev		•	14753.43	•			
% RSD	•	•	0.44098				

- %RSD for sample should be NMT 2
- The %RSD for the standard solution is below 1, which is within the limits hence method is precise.

Assay (Sample)

Table 5: Peak results for Assay sample

S.No	Name	Rt	Area	Height	USP Tailing	USP plate count
1	Remogliflozin	2.068	244102	89282	1.2	5949
2	Teneligliptin	2.489	3357566	576562	1.0	6866
3	Remogliflozin	2.070	240052	88021	1.2	5861
4	Teneligliptin	2.491	3371663	576999	1.0	6808
5	Remogliflozin	2.067	243230	88882	1.2	5879
6	Teneligliptin	2.489	3364001	570315	1.0	6823

$$\% ASSAY = \frac{Sample \ area}{Standard \ area} \times \frac{Weight \ of \ standard}{Dilution \ of \ standard} \times \frac{Dilution \ of \ sample}{Weight \ of \ sample} \times \frac{Purity}{100} \times \frac{Weight \ of \ tablet}{Label \ claim} \times 100$$

The % purity of Remogliflozin and Teneligliptin in pharmaceutical dosage form was found to be 100.2 %.

Linearity

Table 6: Chromatographic Data for Linearity Study Remogliflozin

Concentration Level (%)	Concentration µg/ml	Average Peak Area
33.3	1	88442
66.6	2	165724
100	3	242754
133.3	4	315906
166.6	5	396371

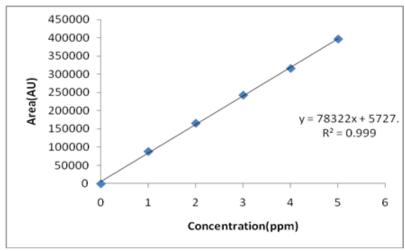


Fig 3: calibration graph for Remogliflozin

Table 7: Chromatographic Data for Linearity Study Teneligliptin

Concentration	Concentration	Average
Level (%)	μg/ml	Peak Area
33	100	1131032
66	200	2345302
100	300	3355282
133	400	4429382
166	500	5623754

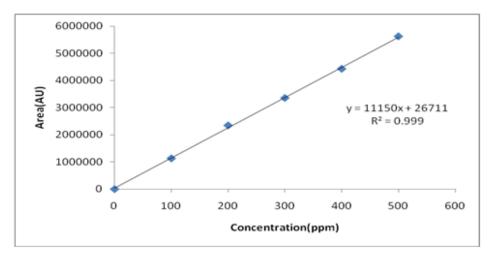


Fig 4: Calibration graph for Teneligliptin

Repeatability

Table 8: Results of repeatability for Remogliflozin

S no	Name	Rt	Area	Height	USP plate count	USP Tailing
1	Remogliflozin	2.065	249684	12079	5343	1.0
2	Remogliflozin	2.064	249696	12068	5473	1.2
3	Remogliflozin	2.064	246325	11949	5473	1.1
4	Remogliflozin	2.065	249816	11811	5389	1.1
5	Remogliflozin	2.067	249892	11735	5180	1.0
Mean			249082.6			
Std. Dev			1543.964			
% RSD	·		0.61986		·	

%RSD for sample should be NMT 2

Table 9: Results of method precession for Teneligliptin

S.No	Name	Rt	Area	Height	USP	USP
1	Teneligliptin	2.486	3233700	59095	6654	1.2
2	Teneligliptin	2.484	3241323	57552	6524	1.3
3	Teneligliptin	2.482	3245927	57213	6440	1.3
4	Teneligliptin	2.483	3245927	57096	6411	1.4
5	Teneligliptin	2.483	3222194	54363	6260	1.4
Mean			3237814			
Std. Dev			10060.62			
% RSD			0.310722			

%RSD for sample should be NMT 2

Intermediate precision

Table 10: Results of Intermediate precision Day 1 for Remogliflozin

S no	Name	Rt	Area	Height	USP plate	USP
1	Remogliflozin	2.066	242721	11323	5272	1.21
2	Remogliflozin	2.066	240155	11564	5168	1.16
3	Remogliflozin	2.066	240945	11887	5310	1.14
4	Remogliflozin	2.065	240385	11938	5275	1.19
5	Remogliflozin	2.069	249920	11652	5078	1.10
6	Remogliflozin	2.067	240820	11750	5225	1.17
Mean			243991			
Std. Dev			4641.97			•
% RSD			1.5			•

%RSD of six different sample solutions should not more than 2

Table 11: Results of Intermediate precision Day 1 for Teneligliptin

S no	Name	Rt	Area	Height	USP	USP	Resolution
1	Teneligliptin	2.477	3325309	54143	6149	1.25	2.1
2	Teneligliptin	2.478	3323780	53740	6127	1.21	2.0
3	Teneligliptin	2.483	3328190	54791	6607	1.28	2.2
4	Teneligliptin	2.486	3329035	55098	6769	1.28	2.2
5	Teneligliptin	2.489	3325968	52379	6709	1.30	2.3
6	Teneligliptin	2.483	3327725	54779	6756	1.36	2.1
Mean			3326668				
Std. Dev			1985.641				
% RSD			0.059689				

Table 12: Results of Intermediate precision Day 2 for Remogliflozin

S no	Name	Rt	Area	Height	USP plate	USP
1	Remogliflozin	2.067	249499	11594	5240	1.2
2	Remogliflozin	2.069	240991	11357	5130	1.2
3	Remogliflozin	2.068	240431	11878	5136	1.2
4	Remogliflozin	2.069	241330	11748	5267	1.2
5	Remogliflozin	2.067	240519	11830	5222	1.2
6	Remogliflozin	2.067	240470	11475	5982	1.2
Mean			242206.7			
Std. Dev			3590.034			
% RSD		·	1.48222			·

%RSD of six different sample solutions should not more than 2

Table 13: Results of Intermediate precision Day 2 for Teneligliptin

S no	Name	Rt	Area	Height	USP	USP	Resolution
1	Teneligliptin	2.485	3426979	53353	6700	1.3	2.0
2	Teneligliptin	2.484	3446641	54454	6563	1.3	2.2
3	Teneligliptin	2.496	3430606	53532	6855	1.3	2.1
4	Teneligliptin	2.484	3430952	55157	6864	1.3	2.1
5	Teneligliptin	2.490	3431676	56223	6942	1.3	2.3
6	Teneligliptin	2.490	3429187	58578	6644	1.3	2.2
Mean			3433812				
Std. Dev			7041.409				
% RSD			0.205061				

Accuracy

Table 14: The accuracy results for Remogliflozin

%Concentration	Area	Amount Added	Amount Found	% Recovery	Mean Recovery
50%	124675.7	15	15.1	101%	
100%	242006.3	30	30.1	100.5%	100.4%
150%	357449	45	44.9	99.7%	•

Table 15: The accuracy results for Teneligliptin

%Concentration	Area	Amount Added	Amount Found	% Recovery	Mean Recovery
50%	1696259	18.75	18.71	99.8%	
100%	3351661	37.5	37.2	99.4%	99.2%
150%	4975094	56.25	55.47	98.6%	

The percentage recovery was found to be within the limit (98-102%).

Limit of detection

The detection limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be detected but not necessarily quantitated as an exact value.

LOD= $3.3 \times \sigma / s$

Where

 σ = Standard deviation of the response

S = Slope of the calibration curve

Result:

Remogliflozin:

=3.3 × 1760.8/78322

 $=0.07 \mu g/ml$

Teneligliptin:

 $=3.3 \times 61155/11150$

 $=18.0 \mu g/ml$

Limit of quantitation

The quantitation limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be quantitatively determined.

 $LOQ=10\times\sigma/S$

Where

 σ = Standard deviation of the response

S = Slope of the calibration curve

Result:

Remogliflozin:

=10×1760.8/78322

 $=0.2\mu g/ml$

Teneligliptin:

 $=10 \times 61155/11150$

The results obtained for recovery at 50%, 100%, 150% are within the limits. Hence method is accurate.

 $= 54.8 \mu g/ml$

Robustness

Table 16: Results for Robustness of Remogliflozin

Parameter used for sample analysis	Peak Area	Retention Time	Theoretical	Tailing factor
Actual Flow rate of 1.0 mL/min	247392	2.061	7243	1.2
Less Flow rate of 0.9 mL/min	69214	2.267	4713	1.3
More Flow rate of 1.1 mL/min	388838	1.864	4740	1.2
Less organic phase	445628	2.165	4709	1.2
More organic phase	69404	1.967	5590	1.4

The tailing factor should be less than 2.0 and the number of theoretical plates (N) should be more than 2000.

Table 17: Results for Robustness of Teneligliptin

Parameter used for sample analysis	Peak Area	Retention	Theoretical plates	Tailing
Actual Flow rate of 1.0 mL/min	3530866	2.462	3389	1.1
Less Flow rate of 0.9 mL/min	527373	2.690	5275	1.0
More Flow rate of 1.1 mL/min	4363129	2.284	5611	1.0
Less organic phase	3965572	2.590	5550	1.0
More organic phase	527708	2.390	6273	1.0

The tailing factor should be less than 2.0 and the number of theoretical plates (N) should be more than 2000.

CONCLUSION

In the present investigation, a simple, sensitive, precise and accurate RP-HPLC method was developed for the quantitative estimation of Remogliflozin and Teneligliptin in bulk drug and pharmaceutical dosage forms. This method was simple, since diluted samples are directly used without any preliminary chemical derivatisation or purification steps. Remogliflozin and Teneligliptin was freely soluble in ethanol, methanol and sparingly soluble in water. Methanol: Phosphate Buffer pH 3.9 (55:45v/v) was chosen as the mobile phase. The solvent system used in this method was economical. The %RSD values were within 2 and the method was found to be precise. The results expressed in Tables for

RP-HPLC method was promising. The RP-HPLC method is more sensitive, accurate and precise compared to the Spectrophotometric methods. This method can be used for the routine determination of Remogliflozin and Teneligliptin in bulk drug and in Pharmaceutical dosage forms.

ACKNOWLEDGEMENT

The Authors are thankful to the Management and Principal, Department of Pharmacy, Joginapally B. R. Pharmacy College, Moinabad, for extending support to carry out the research work. Finally, the authors express their gratitude to the Sura Labs, Dilsukhnagar, Hyderabad, for providing research equipment and facilities.

REFERENCES

- 1. Shethi PD. HPLC- quantitative analysis of pharmaceutical formulations. 1st ed. New Delhi: CBS Publishers & Distributors; 2001. p. 8-10, 101-3.
- 2. Kasture AV, Mahadik KR, Wadodkar SG, More HN. Pune: Nirali Prakashan. J Pharm Anal. 8th ed. 2002;II:48-57.
- 3. Prajapati GA. Method development and validation for simultaneous estimation of Hypertensive drugs by RP-HPLC [M.Pharm thesis]. Gujarat, India: Maliba Pharmacy College, Gujarat Technological University. p. 7-28; 2011.
- 4. Gabor S. HPLC in pharmaceutical Analysis. 1st ed. Vol. I. London: CRC Press; 1990. p. 101-73.
- Jeffery GH, Bassett J. Vogel's textbook of Quantitative Chemical Analysis. 5th ed. NY: John Wiley & Sons Inc; 1991. p. 217-35.
- 6. Hobart HW, Merritt LL, John AD. Instrumental methods of analysis. 7th ed. New Delhi: CBS Publishers; 1988. p. 580-610.
- 7. Sharma BK. Instrumental method of chemical analysis, 20th ed. Meerut: Goel Publishing House; 2001. p. 54-83.
- 8. Ashutoshkar. Pharmaceutical drug analysis. 2nd ed. New Delhi. New Age International Publisher; 2005. p. 455-66.
- 9. Ahuja S, Michael WD. Hand book of Pharmaceutical Analysis by HPLC. 1st ed. London: Elsevier Academic Press; 2005. p. 44-54.
- 10. Snyder LR, Kirkland JL, Glajch JL. Practical HPLC method development. 3rd ed. New York: Wiley; 1988. p. 227.
- 11. Skoog DA, West DM. Principles of instrumental analysis. Saunders Golden Sunburst Series. 2nd ed. Philadelphia; 1980. p. 674-5, 690-6
- 12. Dr. Kealey, Haines PJ. Analytical chemistry. 1st ed. Bios Publisher; 2002. P. 1-7.