

INTERNATIONAL JOURNAL OF PHARMACY AND ANALYTICAL RESEARCH

ISSN: 2320-2831

IJPAR |Vol.10 | Issue 2 | Apr - Jun -2021 Journal Home page: www.ijpar.com

Research Study

Open Access

A novel rp- hplc method development & validation for simultaneous estimation of emtricitabine and tenofovir alafenamide in active pharmaceutical ingredients and marketed combined tablet dosage forms

Begari Lal Kumar*, Dr. K. Balaji, Ramya Sri. S

Department of Pharmaceutical Analysis, Avanthi Institute of Pharmaceutical Sciences, Gunthapally, Hyderabad, Telangana, India. Sura Pharma Labs, Dilsukhnagar, Hyderabad, Telangana-500060, India

*Corresponding Author: Begari Lal Kumar Email: surapharmalabs@gmail.com

ABSTRACT

A rapid and precise reverse phase high performance liquid chromatographic method has been developed for the validated of Emtricitabine and Tenofovir Alafenamide, in its pure form as well as in tablet dosage form. Chromatography was carried out on X bridge C18 (4.6×150 mm) 5µ column using a mixture of Methanol: Phosphate Buffer pH3 (60:40v/v) as the mobile phase at a flow rate of 1.0ml/min, the detection was carried out at 252nm. The retention time of the Emtricitabine and Tenofovir Alafenamide was 2.6, 3.8 ± 0.02 min respectively. The method produces linear responses in the concentration range of $5-25\mu$ g/ml of Emtricitabine and 20-100µg/ml of Tenofovir Alafenamide respectively. The method precision for the determination of assay was below 2.0%RSD. The method is useful in the quality control of bulk and pharmaceutical formulations.

Keywords: Emtricitabine, Tenofovir Alafenamide, RP-HPLC, Accuracy, Precision, ICH Guidelines.

INTRODUCTION TO HPLC

HPLC is also called as high pressure liquid chromatography since high pressure is used to increase the flow rate and efficient separation by forcing the mobile phase through at much higher rate. The pressure is applied using a pumping system. The development of HPLC from classical column chromatography can be attributed to the development of smaller particle sizes. Smaller particle size is important since they offer more surface area over the conventional large particle sizes. The HPLC is the method of choice in the field of analytical chemistry, since this method is specific, robust, linear, precise and accurate and the limit of detection is low and also it offers the following advantages.

1. Improved resolution of separated substances

- 2. column packing with very small (3,5 and 10 $\mu m)$ particles
- 3. Faster separation times (minutes)
- 4. Sensitivity
- 5. Reproducibility
- 6. continuous flow detectors capable of handling small flow rates
- 7. Easy sample recovery, handling and maintenance.

Types of HPLC Techniques

Based on Modes of Chromatography

These distinctions are based on relative polarities of stationary and mobile phases

Reverse phase chromatography

In this the stationary phase is non-polar and mobile phase is polar. In this technique the polar compounds are eluted first and non polar compounds are retained in the column and eluted slowly. Therefore it is widely used technique.

Normal phase chromatography

In this the stationary phase is polar and mobile phase is nonpolar. In this technique least polar compounds travel faster and are eluted first where as the polar compounds are retained in the column for longer time and eluted. (Fig 1)

Fig.1: Components of HPLC instrument block diagram.

Analytical method validation

Method validation as per ICH can be defined as "Establishing documented evidence, which provides a high degree of assurance that a specific activity will consistently produce a desired result or product meeting its predetermined specifications and quality characteristics.

Objective of validation

There are two important reasons for validating assays in the pharmaceutical industry. The first, and by for most important is that assay validation is an integral part of the quality control system. The second is that current good manufacturing practice regulation requires assay validation. In industry it would be difficult to confirm that the product being manufactured is uniform and that meet the standards set to assure fitness for use. The varying nature of the differences between the analytical development laboratory and quality control laboratory is a good reason for validation program.

Method validation study includes Specificity / Selectivity, Linearity, Accuracy, Precision, Limit of detection, Limit of Quantitation, Robustness, System suitability and Stability criteria (Table 1)

S.No	Characteristics	Acceptance criteria
1	Accuracy	98-102%
2	Precision	RSD<2
3	Specificity	No interference
4	Detection limit	S/N >3:1
5	Quantitation limit	S/N > 10:1
6	Linearity	$R^2 > 0.99$

Table 1: Acceptance criteria of validation for HPLC.

Aim and objectives

- ✓ To develop new simple, sensitive, accurate and economical analytical method for the simultaneous estimation of Emtricitabine (EMT) and Tenofovir Alafenamide (TEN).
- ✓ To validate the proposed method in accordance with USP and ICH guidelines for the intended analytical application i.e., to apply the proposed method for

analysis of the Emtricitabine (EMT) and Tenofovir Alafenamide (TEN) in dosage form.

The utility of the developed method to determine the content of drug in commercial formulation was also demonstrated. Validation of the method was done in accordance with USP and ICH guideline for the assay of active ingredient. The method was validated for parameters like system suitability, linearity, precision, accuracy, specificity, ruggedness and robustness, limit of detection and limit of quantification. This method provides means to quantify the component. This

Pharmaceutical dosage forms.

MATERIALS AND METHODS

Table 2: Instruments used

S.No	Instrument	Model
1	HPLC	WATERS Alliance 2695 separation module, Software: Empower 2, 996 PDA Detector.
2	UV/VIS spectrophotometer	LABINDIA UV
3	pH meter	Lab India
4	Weighing machine	Sartorius
5	Pipettes and Burettes	Borosil
6	Beakers	Borosil
7	Digital ultra sonicator	Labman

Table 3: chemicals used

S.No	Chemical	Brand names		
1	Emtricitabine	Sura labs		
2	Tenofovir Alafenamide	Sura labs		
3	Water and Methanol for HPLC	LICHROSOLV (MERCK)		
4	Anhydrous di hydrogen phosphate	Finar chemicals		
5	Phosphate Buffer	Finar chemicals		
6	Citric Acid	Finar chemicals		

HPLC METHOD DEVELOPMENT

Mobile Phase Optimization

Initially the mobile phase tried was Water: Methanol and ACN: Methanol with varying proportions. Finally, the mobile phase was optimized to phosphate buffer (pH 3), Methanol in proportion 60:40 v/v respectively.

Optimization of Column

The method was performed with various columns like C18 column ODS column, Zodiac column, and Xterra C18 column. Xbridge C18 (4.6 x 150mm, 5µm) was found to be ideal as it gave good peak shape and resolution at 1ml/min flow.

Optimized chromatographic conditions

Waters HPLC with auto sampler and PDA detector 996 model. Instrument used : : X bridge C18 (4.6×150mm) 5 μ Column Buffer : Phosphate buffer (pH-3)-Dissolve 0.9g of anhydrous di hydrogen phosphate and 1.298 g of Citric acid mono hydrate in sufficient water to produce 1000ml. Adjust the pH 3 by using ortho phosphoric acid. PH : 3 Mobile phase Methanol: Phosphate Buffer pH3 (60:40v/v) : Flow rate 1.0 ml per min ٠ 252 nm Wavelength Injection volume : 10 µl Run time 10 min.

RESULTS AND DISCUSSION

(Optimized Condition)

Begari Lal Kumar et al / Int. J. of Pharmacy and Analytical Research Vol-10(2) 2021 [90-100]

Figure-2: Chromatogram for Trail 7

Table-4: Peak Results for Trail 7

S. No.	Peak name	R _t	Area	Height	USP Resolution	USP Tailing	USP plate count
1	Emtricitabine	2.669	917816	128672		1.5	3551.0
2	Tenofovir Alafenamide	3.855	5040174	562209	1.7	1.4	4675.7

Observation

This trial shows improper separation sample peaks, baseline and show very less plate count in the chromatogram. So it's required more trials to obtain good peaks.

Resolution between two drugs must be not less than 2.

Theoretical plates must be not less than 2000.

From the above chromatogram it was observed that the Tenofovir Alafenamide and Emtricitabine peaks are well separated and they shows proper retention time, resolution, peak tail and plate count. So it's optimized trial. (Table 5) Retention time of Emtricitabine– 2.669min Retention time of Tenofovir Alafenamide –3.855min

Table 5: Results of system suitability parameters for Emtricitabine and Tenofovir Alafenamide

S.No.	Name	Retention time(min)	Area (μV sec)	Height (µV)	USP resolution	USP tailing	USP plate count
1	Emtricitabine	2.669	918737	128687		1.5	3549.3
2	Tenofovir Alafenamide	3.855	5040174	562209	1.7	1.4	4675.7

Acceptance Criteria

- Tailing factor must be not less than 0.9 and not more than 2.
- It was found from above data that all the system suitability parameters for developed method were within the limit.

Validation parameters

Table 6: S	howing	assay	standard	results
------------	--------	-------	----------	---------

S.No.	Name	Rt	Area	Height	USP Resolution	USP Tailing	USP plate count	Injection
1	Emtricitabine	2.669	918296	128680		1.5	3550	1
2	Tenofovir Alafenamide	3.855	5041296	562209	1.7	1.4	4675	1
3	Emtricitabine	2.669	918482	128625		1.5	3548	2
4	Tenofovir Alafenamide	3.855	5040174	562162	1.7	1.4	4592	2
5	Emtricitabine	2.654	918215	128721		1.5	3595	3

6 Tenofovir Alafenamide 3.849 5040154 562481 1.7 1.4 4618 3	3	
---	---	--

Table- 7: Showing assay sample results

S.No.	Name	Rt	Area	Height	USP Resolution	USP Tailing	USP plate count	Injection
1	Emtricitabine	2.669	918296	128680		1.6	3550.1	1
2	Tenofovir Alafenamide	3.855	50401746	562209	1.7	1.4	4675	1
3	Emtricitabine	2.651	919583	128700		1.5	3547.8	2
4	Tenofovir Alafenamide	3.849	15041294	562209	1.7	1.4	4675	2
5	Emtricitabine	2.621	918296	128680		1.5	3550.1	3
6	Tenofovir Alafenamide	3.840	5040215	562209	1.7	1.4	4675	3

Table-8: Showing Assay Results

S.No	Name of compound	%purity
1	Emtricitabine	98 %
2	Tenofovir Alafenamide	99%

The retention time of Tenofovir Alafenamide and Emtricitabine was found to be 2.669min and 3.855mins respectively. The % purity of Emtricitabine and Tenofovir Alafenamide in pharmaceutical dosage form was found to be 98% and 99% respectively. (Table 9 & 10)

Table-9: Results of method precession for Emtricitabine

S.No.	Name	Rt	Area	Height	USP plate count	USP Tailing
1	Emtricitabine	2.669	918296	128680	3550	1.5
2	Emtricitabine	2.659	918356	128712	3546	1.5
3	Emtricitabine	2.671	918247	128614	3574	1.5
4	Emtricitabine	2.669	918636	128647	3564	1.5
5	Emtricitabine	2.669	919578	128652	3712	1.5
Mean			918622.6			
Std. Dev			554.9295			
% RSD			0.060409			

Table 10: Results of method precision for Tenofovir Alafenamide

S.No.	Name	Rt	Area	Height	USP plate count	USP Tailing	USP Resolution
1	Tenofovir Alafenamide	3.855	5040174	562209	4675	1.4	1.7
2	Tenofovir Alafenamide	3.842	5046151	562219	4765	1.4	1.7
3	Tenofovir Alafenamide	3.850	5053141	561436	4512	1.4	1.7
4	Tenofovir Alafenamide	3.845	5076521	562148	4155	1.4	1.7
5	Tenofovir Alafenamide	3.855	5063147	571542	4951	1.4	1.7
Mean			5055827				
Std. Dev			14384.71				
% RSD			0.284518				

Acceptance criteria

- %RSD for sample should be NMT 2.
- The %RSD for the standard solution is below 1, which is within the limits hence method is precise.

Intermediate precision/Ruggedness

Table-11: Results of Intermediate precision for Emtricitabine

S.No.	Name	Rt	Area	Height	USP plate count	USP Tailing
1	Emtricitabine	2.669	918296	128675	3684	1.5
2	Emtricitabine	2.529	908296	128457	3564	1.5
3	Emtricitabine	2.669	907194	128475	3579	1.5
4	Emtricitabine	2.569	909291	128621	3569	1.5

5	Emtricitabine	2.569	908296	128632	3546	1.5
6	Emtricitabine	2.669	908458	128419	3550	1.5
Mean			909971.8			
Std. Dev			4132.316			
% RSD			0.454115			

Table-12: Results of Intermediate precision for Tenofovir Alafenamide

S.No.	Name	Rt	Area	Height	USP plate count	USP Tailing	USP Resolution
1	Tenofovir Alafenamide	3.845	4940174	562182	4678	1.4	1.7
2	Tenofovir Alafenamide	3.795	4951174	562493	4675	1.4	1.7
3	Tenofovir Alafenamide	3.855	4942175	562198	4624	1.4	1.7
4	Tenofovir Alafenamide	3.840	4840174	563541	4684	1.4	1.7
5	Tenofovir Alafenamide	3.855	4950176	562184	4675	1.4	1.7
6	Tenofovir Alafenamide	3.855	4942312	562487	4621	1.4	1.7
Mean			4927698				
Std. Dev			43117.6				
% RSD			0.875005				

Acceptance criteria

- %RSD of five different sample solutions should not more than 2
- The %RSD obtained is within the limit, hence the method is rugged.

Accuracy

Table-13: Results of Accuracy standard values

S.No.	Name	Rt	Area	Height	USP Resolution	USP Tailing	USP plate count	Injection
1	Emtricitabine	2.669	918296	128680		1.5	3550	1
2	Tenofovir Alafenamide	3.855	5040174	562209	1.7	1.4	4675	1
3	Emtricitabine	2.658	918594	128541		1.5	3514	2
4	Tenofovir Alafenamide	3.849	5040214	562152	1.7	1.4	4621	2
5	Emtricitabine	2.661	918364	128632		1.5	3599	3
6	Tenofovir Alafenamide	3.851	5046512	568421	1.7	1.4	4625	3

Table-14: Results of Accuracy sample 50% values

S.No.	Name	Rt	Area	Height	USP Resolution	USP Tailing	USP plate count	Injection
1	Emtricitabine	2.668	576127	80301		1.5	3594	1
2	Tenofovir Alafenamide	3.865	3113550	346575	1.7	1.4	4785	1
3	Emtricitabine	2.659	577153	80321		1.5	3561	2
4	Tenofovir Alafenamide	3.862	3120597	346693	1.7	1.4	4162	2
5	Emtricitabine	2.696	577763	80333		1.5	3951	3
6	Tenofovir Alafenamide	3.858	3125881	346769	1.7	1.4	4824	3

Table-15: Results of Accuracy sample 100% values

S.No.	Name	Rt	Area	Height	USP Resolution	USP Tailing	USP plate count	Injection
1	Emtricitabine	2.658	917816	128672		1.5	3551.0	1
2	Tenofovir Alafenamide	3.854	5149522	562209	1.7	1.4	4518.1	1
3	Emtricitabine	2.641	918737	128687		1.5	3549.3	2
4	Tenofovir Alafenamide	3.849	5751221	562147	1.7	1.4	4695.1	2
5	Emtricitabine	2.670	917816	128672		1.5	3551.0	3
6	Tenofovir Alafenamide	3.851	5012452	569142	1.7	1.4	4672.3	3

S.No.	Name	Rt	Area	Height	USP Resolution	USP Tailing	USP plate count	Injection
1	Emtricitabine	2.671	1288229	777609	1.7	1.5	3521	1
2	Tenofovir Alafenamide	3.896	1288154	181646	1.7	1.4	4484	1
3	Emtricitabine	2.662	1275416	777502	1.7	1.5	3562	2
4	Tenofovir Alafenamide	3.831	1289142	182651	1.7	1.4	4456	2
5	Emtricitabine	2.677	1289352	777518	1.7	1.5	3526	3
6	Tenofovir Alafenamide	3.815	1289327	181459	1.7	1.4	4562	3

Table-16: Results of Accuracy sample 150% values

Table-17: Accuracy (recovery) data for Emtricitabine

%Concentration (at specification Level)	Area	Amount Added (ppm)	Amount Found (ppm)	% Recovery	Mean Recovery
50%	577153	7.5	7.47	98%	
100%	918737	15	14.92	99.2%	98.8%
150%	1288229	22.5	22.49	99.3%	-

Acceptance Criteria

• The percentage recovery was found to be within the limit (98-102%).

The results obtained for recovery at 50%, 100%, 150% are within the limits. Hence method is accurate. (Table-18)

Table-18: Accuracy	(recovery) data for	or Tenofovir Alafenamide
---------------------------	---------------------	--------------------------

%Concentration (at specification Level)	Area	Amount Added (ppm)	Amount Found (ppm)	% Recovery	Mean Recovery
50%	3120597	30	29.8	98%	
100%	5040174	60	59.9	99.9%	99.1%
150%	7087906	90	89.8	99.6%	

Acceptance Criteria

• The % Recovery for each level should be between 98.0 to 102.0%. (Figure 3)

Linearity Results: (for Emtricitabine)

S.No	Linearity Level	Concentration(ppm)	Area
1	Ι	5	300010
2	II	10	575361
3	III	15	856266
4	IV	20	1139178
5	V	25	1385477
	Coefficient	0.999	

Table 19

Acceptance Criteria: Correlation coefficient should be not less than 0.999 (Figure 4)

Figure 4 calibration graphs for Tenofovir Alafenamide

Linearity Results: (for Tenofovir Alafenamide)

Table	20
1 ante	

S.No	Linearity Level	Concentration(ppm)	Area
1	Ι	20	1903922
2	II	40	3637044
3	III	60	5210174
4	IV	80	6856370
5	V	100	8493149
Correlation Coefficient			0.999

Acceptance Criteria

• Correlation coefficient should be not less than 0.99.

Table-21: Analytical performance parameters of Emtricitabine and Tenofovir Alafenamide

Parameters	Emtricitabine	Tenofovir Alafenamide
Slope (m)	27788	84137
Intercept (c)	14682	14323
Correlation coefficient (R^2)	0.999	0.999

Acceptance criteria

Correlation coefficient (R^2) should not be less than 0.999

Limit of detection

The detection limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be detected but not necessarily quantitated as an exact value.

LOD= $3.3 \times \sigma / s$

Where, σ = Standard deviation of the response, S = Slope of the calibration curve

Emtricitabine

Result: =1.4 μ g/ml

Tenofovir Alafenamide

Result: =1.5µg/ml

Quantitation limit

The quantitation limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be quantitatively determined. $LOQ=10 \times \sigma/S$

Where, σ = Standard deviation of the response, S = Slope of the calibration curve

Emtricitabine

Result: =4.2 μ g/ml

Tenofovir Alafenamide

Result: =4.7 μ g/ml

System suitability results for Emtricitabine

Table 22 * Results for actual flow (1.0 ml/min) have been considered from Assay standard.

		System Suitability Results	
S.No	Flow Rate (ml/min)	USP Plate Count	USP Tailing
1	0.9	3462	1.5
2	1.0	3578	1.5
3	1.1	3421	1.5

System suitability results for Tenofovir Alafenamide

Table 23 * Results for actual flow (1.0ml/min) have been considered from Assay standard.

		System Suitability Results	
S.No	Flow Rate (ml/min)	USP Plate Count	USP Tailing
1	0.9	4675	1.4
2	1.0	4675.6	1.4
3	1.1	4085	1.4

System suitability results for Emtricitabine

Table 24

S.No	Change in Organic Composition in the Mobile Phase	System Suitability Results	
		USP Plate Count	USP Tailing
1	10% less	4819.3	1.5
2	*Actual	3550.3	1.5
3	10% more	4721.8	1.5

System suitability results for Tenofovir Alafenamide

S.No	Change in Organic Composition in the Mobile Phase	System Suitability Results	
		USP Plate Count	USP Tailing
1	10% less	5834.2	1.4
2	*Actual	4675.6	1.4
3	10% more	5235.6	1.4

Table 25 * Results for actual mobile phase have been considered from Assay standard.

SUMMARY AND CONCLUSION

High performance liquid chromatography is at present one of the most sophisticated tool of the analysis. The estimation of Emtricitabine and Tenofovir Alafenamide was done by RP-HPLC. The Phosphate buffer was p^H 3 and the mobile phase was optimized with consists of Methanol: Phosphate buffer (pH-3) mixed in the ratio of 60:40 % v/v. An Xbridge column C18 (4.6 x 150mm, 5µm) or equivalent chemically bonded to porous silica particles was used as stationary phase. The solutions were chromatographed at a constant flow rate of 1.0 ml/min. The linearity range of Emtricitabine and Tenofovir Alafenamide were found to be from 5- $25\mu g/ml$, 20-100µg/ml respectively. Linear regression coefficient was not more than 0.999, 0.999. The values of % RSD are less than 2% indicating accuracy and precision of the method. The percentage recovery varies from 98-99% of Emtricitabine and Tenofovir Alafenamide.LOD and LOQ were found to be within limit. The results obtained on the validation parameters met ICH and USP requirements. It inferred the method found to be simple, accurate, precise and linear. The method was found to be having suitable application in routine laboratory analysis with high degree of accuracy and precision.

ACKNOWLEDGEMENT

The Authors are thankful to Sura Labs, Dilshukhnagar, and Hyderabad for providing the necessary facilities for the research work

REFERENCES

- 1. Skoog DA, Holler FJ, Nieman TA. Principles of instrumental analysis. 5th ed; 2005. p. 733-8.
- 2. Beckett HA, Stenlake BJ. Practical Pharmaceutical chemistry. 4th ed. New Delhi: CBS Publishers; 2003. p. 168-9.
- 3. British Pharmacopoeia: Convention Inc, Rockville, 2008. Vol. I. p. 965-6.
- 4. Sharma BK. Instrumental methods of chemical analysis. 3rd ed. Meerut: Goel Publishers; 2005. p. 861-76.
- 5. Gennaro AR, Remington. The science and practice of pharmacy. 28th ed, Luppincott. Baltimore: Williams & Wilkins; 2000. p. 534-49.
- 6. Shabir GA. HPLC method development and validation for pharmaceutical analysis 2004. p. 25-7.
- 7. International Conference on Harmonization: ICH Q 2 (R1) Validation of Analytical Procedure, Text and Methodology 1995.
- 8. ICH tripartite guidelines. Validation of analytical procedures: methodology. Fed Regist, vol (62). International Conference on Harmonization; 1997. p. 27.
- 9. Beckett AH, Stenlake JB. 'Practical Pharmaceutical Chemistry', volume I and II. CBS Publishers & New Delhi, India: Distributors; 2000.
- 10. Sethi PD. Quantitative analysis of drugs in pharmaceutical formulations. 3rd ed. CBS Publishers & Distributors, New Delhi, India; 1997.
- 11. International Conference on Harmonization. Guidance for industry: Q2B validation of analytical procedures: methodology. Vol. 10; 1996.
- 12. Willard HH, Merrit LL, Dean JA, Settle FA. Instrumental methods of analysis. 7th ed. New Delhi: CBS Publishers and Distributors; 1986. p. 582-607.
- 13. Snyder LR, Kirkland JJ, Dolan JW. Introduction to modern liquid chromatography. New York: John Wiley & Sons; 2009.
- 14. Dong MW. Modern HPLC for practicing scientists. Wiley; 2006.
- 15. Snyder LR, Kirkland JJ, Glajch JL. Practical HPLC method development. New York: John Wiley & Sons; 1997.
- 16. Ahuja S, Rasmussen HT (ed). HPLC method development for pharmaceuticals. Academic Press; 2007.
- 17. Ahuja S, Dong MW (ed). Handbook of pharmaceutical analysis by HPLC. Elsevier/Academic Press; 2005.
- 18. Kazakevich YV, Lo Brutto R (ed.). HPLC for Pharmaceutical Scientists. Wiley; 2007.
- 19. Neue UD. HPLC columns: theory, technology, and practice. New York: Wiley-VCH Press; 1997.
- 20. McMaster MC. HPLC, a practical user's guide. Wiley; 2007.
- 21. Michael DR, Stephen PHA, David AK. Pharmacology. 2009.
- 22. International Conference on Harmonization, Guideline on Validation of Analytical Procedure. Methodology, Geneva, Switzerland; 1996.
- 23. Pharmaceutical process validation Berry IR, Nash RA, editors. 2nd ed; 1993.
- 24. Guidelines on general principles of process validation, CDER. US FDA; 1987.

- 25. ICH. Validation of analytical procedures: text and methodology International Conference on Harmonization. Geneva: 2005. Vol. Q2 (A). p. 1-13.
- 26. Available from: https://www.drugbank.ca/drugs/DB00879 [cited 30/3/2021].
- 27. Available from: https://en.wikipedia.org/wiki/Emtricitabine [cited 30/3/2021].
- 28. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Emtricitabine [cited 30/3/2021].
- 29. Available from: https://www.pdr.net/drug-summary/Emtriva-emtricitabine-2517 [cited 30/3/2021].
- 30. Available from: https://www.drugbank.ca/drugs/DB09299 [cited 30/3/2021].
- 31. Available from: https://en.wikipedia.org/wiki/Tenofovir_alafenamide [cited 30/3/2021].
- 32. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Tenofovir-alafenamide [cited 30/3/2021].
- 33. Mastanamma Sk, Venkata Reddy D, P. Saidulu1 and M Varalakhimi2, development and validation of stability indicating RP-HPLC method for the simultaneous estimation of emtricitabine tenofovir alafenamide bulk and their combined dosage form. J Chem Pharm Res. 2017; 9(9):70-80.
- 34. Badgujar BP, Mahajan MP, Sawant SD. Development and validation of RP-HPLC method for the simultaneous estimation of tenofovir alafenamide and emtricitabine in bulk and tablet dosage form. Int J Chem Technol Research. 2017; 10(5):731-9.
- 35. Dudekula B, Ravichandran Dr. C, Ramachandraiah Dr. C, Devanna Dr. N. Development and validation of RP-HPLC method for the simultaneous estimation of emtricitabine and tenofovir alafenamide in bulk and tablet dosage form, European. J Biomed Pharm Sci Ejbps. 2017; 4(10):663-8.
- 36. Gandla, Swamy K, Rajkumar M, Pranay K, Sudheer Kumar D. New stability indicating RP-HPLC method for the simultaneous estimation of tenofovir alafenamide and emtricitabine in bulk and combined tablet dosage forms, Asian. J Pharm Anal Med Chem. 2017; 5(4):142-9.