

IJPAR |Vol.10 | Issue 2 | Apr - Jun -2021 Journal Home page: www.ijpar.com

Research Study

Open Access

Development and validation of a rapid and specific rp- hplc method for simultaneous estimation of benazepril and hydrochlorothiazide in pure form and in their marketed pharmaceutical dosage form

K.V. Subhasree*, Shankar Cheruku, Ramya Sri. S

Department of Pharmaceutical Analysis, Vijaya College of Pharmacy, Telangana, India. Sura Pharma Labs, Dilsukhnagar, Hyderabad, Telangana-500060, India

ABSTRACT

A new, simple, rapid and precise reverse phase high performance liquid chromatographic method has been developed for the validation of Benazepril and Hydrochlorothiazide in its pure form as well as in combined marketed formulation. Chromatography was carried out on a Phenomenex Luna C18 (4.6mm×250mm) 5µm particle size column using a mixture of Methanol: Phosphate Buffer (pH-4.2) (37:63% v/v) as the mobile phase at a flow rate of 1.0ml/min, the detection was carried out at 275nm. The retention time of the Benazepril and Hydrochlorothiazide was found to be was 2.133, 3.692±0.02min respectively. The method was validated according to ICH guidelines for linearity, sensitivity, accuracy, precision, specificity and robustness. The method produce linear responses in the concentration range of 20-60mg/ml of Benazepril and 10-30mg/ml of Hydrochlorothiazide. The inter-day and intra-day precisions were found to be within limits. The method precision for the determination of assay was below 2.0%RSD. The method is useful in the quality control of bulk and pharmaceutical formulations.

Keywords: Benazepril and Hydrochlorothiazide, RP-HPLC, Validation, Accuracy, Precision.

INTRODUCTION

The present study was designed to develop a simple, precise, and rapid analytical RP-HPLC procedure, which can be used for the analysis of assay method for simultaneous estimation of Benzepril and Hydrochlorothiazide as there was only individual methods reported for both drugs. The combination of these two drugs is not official in any pharmacopoeia; hence no official method is available for the simultaneous estimation of these two drugs in their combined dosage forms. Literature survey of clarithromycin and paracetamol revealed several methods for detecting these drugs individually but there is no method for their simultaneous estimation using RP-HPLC.

The developed method was validated as per ICH guidelines and its updated international convention. The linearity of response, precision, ruggedness and robustness of the described method has been checked.

Theory of Reversed Phase Chromatography

Reversed phase chromatography has found both analytical and preparative applications in the area of biochemical separation and purification. Molecules that possess some degree of hydrophobic character can be separated by reversed phase chromatography with excellent recovery and resolution.

The separation mechanism in reversed phase chromatography depends on the hydrophobic binding interaction between the solute molecule in the mobile phase and the immobilised hydrophobic ligand, i.e. the stationary phase. The actual nature of the hydrophobic binding interaction itself is a matter of heated debate but the conventional wisdom assumes the binding interaction to be the result of a favourable entropy effect. The initial mobile phase binding conditions used in reversed phase chromatography are primarily aqueous which indicates a high degree of organised water structure surrounding both the solute molecule and the immobilised ligand. As solute binds to the immobilised hydrophobic ligand, the hydrophobic area exposed to the solvent is minimised. Therefore, the degree of organised water structure is diminished with a corresponding favourable increase in system entropy. In this way, it is advantageous from an energy point of view for the hydrophobic moieties, i.e. solute and ligand, to associate (Figure 1).

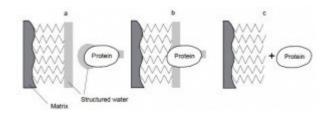


Figure 1: interaction of a solute with a typical reversed phase medium

Water adjacent to hydrophobic regions is postulated to be more highly ordered than the bulk water. Part of this 'structured' water is displaced when the hydrophobic regions interact leading to an increase in the overall entropy of the system. Separations in reversed phase chromatography depend on the reversible adsorption/desorption of solute molecules with varying degrees of hydrophobicity to a hydrophobic stationary phase. The majority of reversed phase separation experiments are performed in several fundamental steps as illustrated in **Figure 2**.

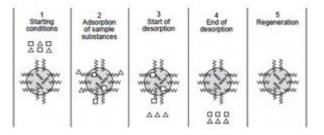


Figure 2: principle of reversed phase chromatography with gradient elution

Aim and objective

➤ In view of the need for a suitable RP-HPLC method for routine analysis of Benazepril and Hydrochlorothiazide in formulations, attempts were made to develop simple, precise and accurate analytical method for simultaneous estimation of Benazepril and Hydrochlorothiazide and extend it for their determination in formulation.

> Validation is a necessary and important step in both framing and documenting the capabilities of the developed method.

The utility of the developed method to determine the content of Benazepril and Hydrochlorothiazide in commercial formulation was also demonstrated. Validation of the method was done in accordance with USP and ICH guideline for the assay of active ingredient. The method was validated for parameters like system

suitability, linearity, precision, accuracy, specificity, ruggedness and robustness, limit of detection and limit of quantification. This method provides means to quantify the component. This proposed method was suitable for the analysis of Pharmaceutical dosage forms.

MATERIALS AND METHODS

Table 1: Instruments used

S.No	Instruments And Glass wares	Model
1	HPLC	WATERS, software: Empower 2, Alliance 2695 separation module. 996 PDA detectors.
2	pH meter	Lab India
3	Weighing machine	Sartorius
4	Volumetric flasks	Borosil
5	Pipettes and Burettes	Borosil
6	Beakers	Borosil
7	Digital ultra sonicator	Labman

Table-2: Chemicals used

S.No.	Chemical	Brand names	
1	Benazepril	Sura labs	
2	Hydrochlorothiazide	Sura labs	
3	Water and Methanol for HPLC	LICHROSOLV (MERCK)	
4	Acetonitrile for HPLC	Merck	
5	Potassium Dihydrogen Phosphate	Merck	

RESULTS AND DISCUSSION

Optimized Chromatogram (Standard)

Mobile phase ratio	: Methanol: Phosphate Buffer (pH-4.2) (37:63 V/v)
Column	: Phenomenex Luna C18 (4.6mm×250mm) 5µm particle size
Column temperature	: 35°C
Wavelength	: 275nm
Flow rate	: 1ml/min
Injection volume	: 10µl
Run time	: 6minutes
0.20	88

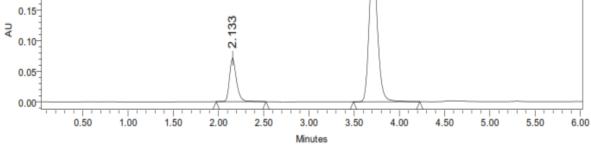


Figure-3: Optimized Chromatogram (Standard)

S.No.	. Name	RT	Area	HeightUS	TailingUS	Plate CountR	Resolution
1	Benazepril	2.133	526389	86756	1.56	5679	
2	Hydrochlorothiazid	e3.692	1687285	5367532	1.79	8685	9.8

Observation

From the above chromatogram it was observed that the Benazepril and Hydrochlorothiazide peaks are well separated and they shows proper retention time, resolution, peak tail and plate count. So it's optimized trial.

Optimized Chromatogram

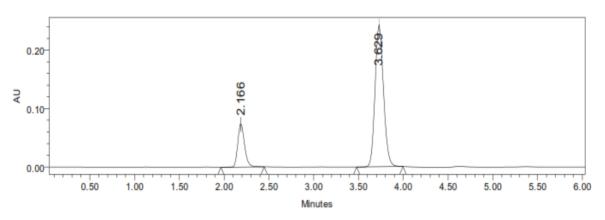


Figure-4: Optimized Chromatogram (Sample)

S.No	. Name	Rt	Area	HeightUSF	P TailingUSP	Plate CountRe	solution
1	Benazepril	2.166	536587	77464	1.57	5789	
2	Hydrochlorothiazide	e 3.629	1695846	5378564	1.80	8795	10.01

Acceptance criteria

- Resolution between two drugs must be not less than 2.
- Theoretical plates must be not less than 2000.
- Tailing factor must be not less than 0.9 and not more than 2.
- It was found from above data that all the system suitability parameters for developed method were within the limit.

Validation

Table-5: Results of system suitability for Benazepril

S.No. Peak Name RI '''''''''''''''''''''''''''''''''''	S.No.	Peak Name RT	Area (µV*sec)Height (µV) _{USP}	Plate CountUSP	Tailing
--	-------	--------------	---	----------------	---------

1	Benazepril 2.152	526358	86598	5695	1.56
2	Benazepril 2.157	526548	86254	5652	1.57
3	Benazepril 2.141	526854	86598	5627	1.56
4	Benazepril 2.133	526598	86245	5692	1.57
5	Benazepril 2.166	524874	86521	5641	1.56
Mean		526246.4			
Std. Dev	·				
_		787.353			
%RSD		0.149617			

Acceptance Criteria

- %RSD of five different sample solutions should not more than 2.
- The %RSD obtained is within the limit, hence the method is suitable. (Table 6)

Table-6: Results of system suitability for Hydrochlorothiazide

S.No.	Peak Name RT	Area (µV*sec	e)Height (μV) _{USP}	Plate CountUSP	TailingResol	ution
1	Hydrochlorothiazide3.674	1682821	1686958	8659	1.56 9.5	8
2	Hydrochlorothiazide3.631	1682726	1685745	8675	1.57 9.9	9
3	Hydrochlorothiazide3.625	1687361	1685421	8692	1.56 9.5	8
4	Hydrochlorothiazide3.692	1682811	1685242	8642	1.57 9.3	8
5	Hydrochlorothiazide3.629	1683816	1685364	8635	1.58 9.3	8
Mean		1683907				
Std. Dev	•	1982.03				
%RSD		0.117704				

Acceptance Criteria

- %RSD of five different sample solutions should not more than 2.
- The %RSD obtained is within the limit, hence the method is suitable.

Specificity

The ICH documents define specificity as the ability to assess unequivocally the analyte in the presence of components that may be expected to be present, such as impurities, degradation products, and matrix components.

Analytical method was tested for specificity to measure accurately quantitate Benazepril and Hydrochlorothiazide in drug product. (Table-7, 8, 9 & 10)

Table-7:	Peak results	for as	sav standard	of Benazepril

S.No	Name	RT	Area	Heightl	USP Tailing	USP Plate Coun	tInjection
1	Benazepril	2.152:	526358	86598	1.56	5698	1
2	Benazepril	2.198	526584	86784	1.57	5687	2
3	Benazepril	2.179	529658	86253	1.56	5639	3

Table-8: Peak results for assay standard of Hydrochlorothiazide

S.No	. Name RT	Area	HeightU	SP Tailing	USP Plate Count	tInjection
1	Hydrochlorothiazide3.640	6168758	9365879	1.80	8659	1
2	Hydrochlorothiazide3.604	4168598	7365854	1.79	8697	2
3	Hydrochlorothiazide3.610	0168597	4369854	1.80	8675	3

Table-9: Peak results for Assay sample of Benazepril

S.No) Name RT	Area	Height	USP TailingU	JSP Plate Coun	ntInjection
1	Benazepril2.15	2536859	87584	1.58	5789	1
2	Benazepril2.15	0532654	87965	1.59	5784	2
3	Benazepril2.18	7532685	87465	1.58	5769	3

Table-10: Peak results for Assay sample of Hydrochlorothiazide

S.No	Name	RT	Area	Heightl	SP Tailing	USP Plate Coun	tInjection
¹ Hy	drochlorothiazi	de3.646	1698568	8378562	1.81	8759	1
2 _{Hy}	drochlorothiazi	de3.651	1698574	4375847	1.80	8795	2
3 Hy	drochlorothiazi	de3.601	169854′	7376584	1.81	8745	3

ASSAY =

Sample area	Weight of standard	Dilution of sample	Purity	Weight of table	t
×	×	×	×		×100
Standard area	Dilution of standard	Weight of sample	100	Label claim	-

= 99.89%

The % purity of Benazepril and Hydrochlorothiazide in pharmaceutical dosage form was found to be 99.89%

Chromatographic data for linearity study of benazepril

Concentration	Average
µg/ml	Peak Area
20	272897
30	402986
40	526389
50	649785
60	769287

Table-11: Chromatographic Data for Linearity Study of Benazepril

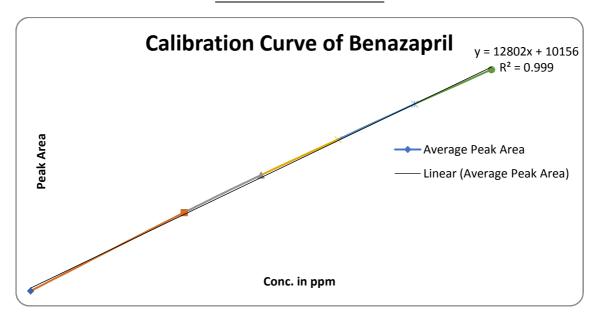
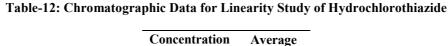


Fig-5: Calibration Curve of Benazepril

Linearity plot

The plot of Concentration (x) versus the Average Peak Area (y) data of Benazepril is a straight line. Y = mx + cSlope (m) =12802 Intercept (c) = 10156


Intercept (c) = 10156Correlation Coefficient (r) = 0.99

Validation criteria

The response linearity is verified if the Correlation Coefficient is 0.99 or greater.

Chromatographic data for linearity study of hydrochlorothiazide

Concentration µg/ml	Average Peak Area
10	1000237
15	1448768
20	1887285
25	2365897
30	2826845

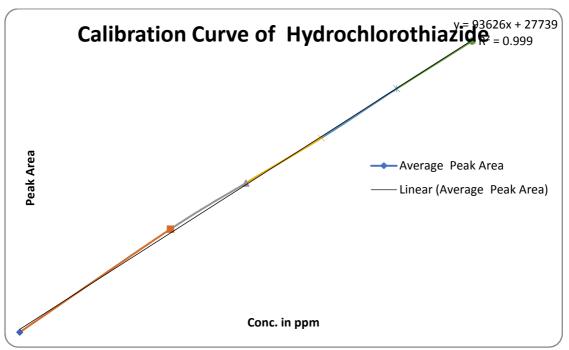


Fig-6: Calibration Curve of Hydrochlorothiazide

Linearity plot

The plot of Concentration (x) versus the Average Peak Area (y) data of Hydrochlorothiazide is a straight line. Y = mx + c

Slope (m) = 93626Intercept (c) = 27739Correlation Coefficient (r) = 0.99

Validation criteria

The response linearity is verified if the Correlation Coefficient is 0.99 or greater.

Precision

The precision of an analytical procedure expresses the closeness of agreement (degree of scatter) between a series of measurements obtained from multiple sampling of the same homogeneous sample under the prescribed conditions.

Repeatability

Obtained Five (5) replicates of 100% accuracy solution as per experimental conditions. Recorded the peak areas and calculated % RSD. (Table-13)

S. No.	Peak Name	Retention time	Area (µV*sec)	Height (µV)	USP Plate Count	USP Tailing
1	Benazepril	2.157	526358	86598	5689	1.56
2	Benazepril	2.159	524856	86542	5687	1.57
3	Benazepril	2.186	526985	86578	5684	1.56
4	Benazepril	2.160	528654	86354	5689	1.56
5	Benazepril	2.170	528457	86958	5639	1.56
Mean			527062			
Std.dev			1569.114			
%RSD			0.297709			

Table-13: Results of repeatability for Benazepril

Acceptance Criteria

- %RSD for sample should be NMT 2
- The %RSD for the standard solution is below 1, which is within the limits hence method is precise. (Table-14, 15)

Table-14: Results of Repeatability for Hydrochlorothiazide

S. No.	Peak Name	Retention time	Area (µV*sec)	Height (µV)	USP Plate Count	USP Tailing
1	Hydrochlorothiazide	3.603	1687589	367859	8659	1.79
2	Hydrochlorothiazide	3.608	1685987	368547	8679	1.80
3	Hydrochlorothiazide	3.600	1685987	367985	8645	1.80
4	Hydrochlorothiazide	3.696	1685754	365874	8695	1.79
5	Hydrochlorothiazide	3.629	1685985	364589	8625	1.79
Mean			1686260			
Std. Dev			749.493			
%RSD			0.044447			

Table-15: Results of Intermediate precision for Benazepril

S.No	Peak Name RT	rea (µV*sec))Height (µV) USP Plate coun	_t USP Tailin	g%Assay
1	Benazepril 2.198	546585	87589	5898	1.58	100%
2	Benazepril 2.196	548758	87985	5879	1.59	100%
3	Benazepril 2.160	549854	87452	5868	1.58	100%
4	Benazepril 2.160	548798	87421	5847	1.59	100%
5	Benazepril 2.160	542659	87963	5896	1.58	100%
6	Benazepril 2.186	548754	87254	5874	1.59	100%
Mean		547568				
Std. Dev	· •					
%RSD		2631.576				
70 KSD		0.480593				

Acceptance criteria

• %RSD of five different sample solutions should not more than 2. (Table 16)

S.No.	Peak Name Rt	Area (µV*sec	c)Height (μV)	USP Plate coun	tUSP Tailing	Resolution	n%Assay
1	Hydrochlorothiazide3.623	1698587	385482	8789	1.81	9.8	98%
2	Hydrochlorothiazide3.611	1698574	385698	8759	1.80	9.8	98.2%
3	Hydrochlorothiazide3.696	1698532	385748	8754	1.81	9.9	98.7%
4	Hydrochlorothiazide3.696	1698574	386958	8754	1.81	10.01	99.7%
5	Hydrochlorothiazide3.696	1698532	385755	5798	1.80	9.98	98.5%
6	Hydrochlorothiazide3.642	1698547	386558	8762	1.80	10.02	98.2%
Mean		1698558					
Std. Dev	7.	23.77113					
%RSD		0.001399					

Table 16: Results of Intermediate precision for Hydrochlorothiazide

Acceptance criteria

• %RSD of five different sample solutions should not more than 2. (Table-17, 18, 19, 20)

S.No.	Name	RT	Area	Heightl	J SP Tailing	USP Plate Cour	ntInjection
1	Benazepril	2.165	266848	45878	1.06	2856	1
2	Hydrochlorothiazid	le3.696	973682	178542	1.15	4586	1
3	Benazepril	2.155	266754	45967	1.07	2875	2
4	Hydrochlorothiazio	le3.684	972534	178598	1.16	4587	2
5	Benazepril	2.173	267432	45265	1.06	2865	3
6	Hydrochlorothiazid	le3.688	972413	178568	1.15	4527	3

Table-17: Results of Accuracy for concentration-50%

Table-18: Results of Accuracy for concentration-100%

S.No.	Name	RT	Area	Height	U SP TailingU	SP Plate Cour	ntInje	ction
1	Benazepril	2.156	523289	86598	1.57	5789		1
2	Hydrochlorothiazid	e3.618	1898547	7365895	1.80	8795		1
3	Benazepril	2.226	523456	86254	1.58	5749		2
4	Hydrochlorothiazid	e3.650	1903242	2364875	1.81	8859		2
5	Benazepril	2.226	524512	86359	1.57	5784	3	
6	Hydrochlorothiazid	e3.650	1898578	368985	1.80	8798	3	

Table-19: Results of Accuracy for concentration-150%

S.No.	Name	RT	Area	Height	USP Tailing	USP Plate Cou	ntInjection
1	Benazepril	2.148	776587	98695	1.78	6859	1
2	Hydrochlorothiazi	de3.6682	2848985	5469852	1.86	9945	1
3	Benazepril	2.195	778798	99862	1.77	6925	2
4	Hydrochlorothiazi	de3.6332	2855486	5465874	1.87	9987	2
5	Benazepril	2.186	779987	98745	1.78	6935	3

K.V. Subhasree et al / Int. J. of Pharmacy and Analytical Research Vol-10(2) 2021 [167-179]

6 Hydrochlorothiazide3.6682848985465325	1.86	9969	3	
---	------	------	---	--

%Concentration (at specification Level)	Area	Amount Added (ppm)	Amount Found (ppm)	% Recovery	Mean Recovery
50%	267011.3	20	20.063	100.315%	_
100%	523752.3	40	40.118	100.295%	100.28%
150%	778457.3	60	60.133	100.221%	-

Table-20: The accuracy results for Benazepril

Acceptance Criteria

• The percentage recovery was found to be within the limit (98-102%). (Table-21)

Table-21: The accuracy results for Hydrochlorothiazide

%Concentration (at specification Level)	Area	Amount Added (ppm)	Amount Found (ppm)	% Recovery	Mean Recovery
50%	972876.3	10	10.094	100.94%	
100%	1900122	20	19.998	99.99%	100.48%
150%	2851152	30	30.156	100.52%	

• The results obtained for recovery at 50%, 100%, 150% are within the limits. Hence method is accurate.

Limit of detection

• The detection limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be detected but not necessarily quantitated as an exact value.

LOD= $3.3 \times \sigma / s$

Where

- σ = Standard deviation of the response
- S = Slope of the calibration curve

BENAZEPRIL

Result

• = $1.04 \mu g/ml$

Hydrochlorothiazide

• **Result:** = 3.12µg/ml

Quantitation limit

• The quantisation limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be quantitatively determined.

LOQ=10×σ/S

Where

- σ = Standard deviation of the response
- S = Slope of the calibration curve

Benazepril

• **Result:** =2.1µg/ml

Hydrochlorothiazide

• **Result**: =6.3µg/ml

Benazepril

Parameter used for sample analysis	Peak Area	Retention Time	Theoretical plates	Tailing factor
Actual Flow rate of 1.0 mL/min	526389	2.133	5679	1.56
Less Flow rate of 0.9 mL/min	542685	2.210	5264	1.54
More Flow rate of 1.1 mL/min	526483	2.184	5426	1.52
Less organic phase	516854	2.200	5163	1.57
More Organic phase	506898	2.172	5098	1.51

Table-22: Results for Robustness

Acceptance criteria

• The tailing factor should be less than 2.0 and the number of theoretical plates (N) should be more than 2000.

Hydrochlorothiazide

Parameter used for sample analysis	Peak Area	Retention Time	Theoretical plates	Tailing factor
Actual Flow rate of 1.0 mL/min	1687285	3.692	8685	1.79
Less Flow rate of 0.9 mL/min	1725468	4.498	8265	1.68
More Flow rate of 1.1 mL/min	1652847	3.505	8415	1.59
Less organic phase	1687485	4.504	8326	1.62
More organic phase	1674524	3.512	8415	1.63

Table 23

Acceptance criteria

• The tailing factor should be less than 2.0 and the number of theoretical plates (N) should be more than 2000.

Summary

Summary of Validation data for Benazepril

S.No.	Parameter	Observation	Acceptance Criteria
	System suitability		
1	Theoretical plates	5679	Not less than 2000
1	Tailing	1.56	Not more than 2
	%RSD	0.14	Not more than 2.0%
2	Specificity		
	%Assay	99.89%	98-102%
3	Method Precision (%RSD)	0.29	Not more than 2.0%
	Linearity	20-60 µg/ml	
4	Slope	12802	
	Correlation coefficient(r^2)	0.999	≤0.99
5	Accuracy		
5	Mean % recovery	100.28%	98 - 102%
6	Robustness	All the system suitability parameters are within the limits.	

Table 24

a)	Flow rate variation
b)	Organic phase variation

Summary of validation data for Hydrochlorothiazide

	Table 25						
S.No	Parameter	Observation	Acceptance criteria				
	System suitability						
1	Theoretical plates	8685	Not less than 2000				
1	Tailing	1.79	Not more than 2				
	%RSD	0.11	Not more than 2.0%				
2	Specificity						
2	%Assay	99.89%	98-102%				
3	Method Precision (%RSD)	0.044	Not more than 2.0%				
	Linearity	10-30 μg/ml					
4	Slope	93626					
	Correlation coefficient(r^2)	0.999	≤0.99				
5	Accuracy						
5	Mean % recovery	100.48%	98 - 102%				
	Robustness						
6	a) Flow rate variation	All the system suitability parameters are within the limits.					
	b) Organic phase variation						

CONCLUSION

In the present investigation, a simple, sensitive, precise and accurate RP-HPLC method was developed for the quantitative estimation of Benazepril and Hydrochlorothiazide in bulk drug and pharmaceutical dosage forms.

This method was simple, since diluted samples are directly used without any preliminary chemical derivatisation or purification steps.

Benazepril was found to be freely soluble in water; soluble in alcohol, in methanol, ethanol and in glacial acetic acid and also soluble in Acetonitrile. Hydrochlorothiazide was found to be is slightly soluble in water, freely soluble in sodium hydroxide solution, in n-butyl amine, and in dimethyl formamide; sparingly soluble in methanol; insoluble in ether, in chloroform, and in dilute mineral acids.

ACKNOWLEDGEMENT

The Authors are thankful to Sura Labs, Dilshukhnagar, and Hyderabad for providing the necessary facilities for the research work.

REFERENCES

- 1. Weston A, Phyllisr. Brown, HPLC principle and practice. 1st ed. Academic press; 1997. P. 24-37.
- Kazakevich Y, Lobrutto R. HPLC for Pharmaceutical Scientists, 1stedition. Wiley Interscience a John Wiley & Sons, Inc Publishing Group; 2007. P. 15-23.
- 3. Chromatography [online]. Available from: http://en.wikipedia.org/wiki/Chromatography [cited 31/3/2021].
- 4. Meyer VR. Practical high-performance liquid chromatography. 4th ed. England: John Wiley & Sons Ltd; 2004. P. 7-8.
- 5. Sahajwalla CG a new drug development. Vol. 141. New York: Marcel Dekker, Inc; 2004. P. 421-6.
- 6. Snyder LR practical HPLC method development. 2nd ed. New York: John Wiley & sons; 1997. P. 180-2.
- 7. Skoog DA, West DM, Holler FJ. Introduction of analytical chemistry. Sounder college of publishing. Harcourt Brace college publishers; 1994. P. 1-5.
- 8. Sharma BK. Instrumental method of chemical analysis Meerut; 1999. P. 175-203.
- 9. Breaux J, Jones K. Understanding and implementing efficient analytical method development and validation. Pharm Technol. 2003; 5:110-4.
- 10. Dr. Kealey, Haines PJ. Analytical Chemistry, 1stedition. Bios Publisher; 2002. P. 1-7.
- 11. Braith Wait A, Smith FJ. Chromatographic methods, 5thedition. Kluwer Academic Publishers; 1996. P. 1-2.
- 12. Introduction to column [online]. Available from: http://amitpatel745.topcities.com/index_files/study/columncare.pdf [cited 31/3/2021].
- 13. Detectors used in HPLC (online). Available from: http://wiki.answers.com/Q/What_detectors_are_used_in_HPLC [cited 31/3/2021].
- 14. Detectors [online]. Available from: http://hplc.chem.shu.edu/NEW/HPLC_Book/Detectors/det_uvda.html [cited 31/3/2021].
- 15. Detectors [online]. Available from: http://www.dionex.com/enus/webdocs/64842-31644-02_PDA-100.pdf [cited 31/3/2021].

- 16. Detectors [online]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8867705 [cited 31/3/2021].
- 17. Detectors [online]. Available from: http://www.chem.agilent.com/Library/applications/59643559.pdf [cited 31/3/2021].
- 18. Detectors [online]. Available from: http://hplc.chem.shu.edu/new/hplcbook/detector [cited 31/3/2021].
- 19. Draft ICH. Guidelines on Validation of Analytical Procedures Definitions and terminology. Fed Regist. 1995; 60:1126.
- 20. Code. Q2B, validation of analytical procedures; methodology. ICH harmonized tripartite guidelines. 1996:1-8.
- 21. Introduction to analytical method validation [online], available from. Available from: http://www.standardbase.hu/tech/HPLC%20validation%20PE.pdf [cited 31/3/2021].
- 22. Data elements required for assay validation [online] available from. Available from: http://www.labcompliance.com/tutorial/methods/default.aspx [cited 31/3/2021].
- 23. Willard Hy, Merritt LL, Dean JA, Settle FA. Instrumental methods of analysis. 7th ed CBS publisher and distributors. New Delhi; 1991. P. 436-9.
- 24. ICH. 'validation of analytical methods, definitions and terminology', ICH Harmonized tripartite guideline. Vol. Q2A; 1999.
- 25. Available from: https://www.drugbank.ca/drugs/DB00542 [cited 31/3/2021].
- 26. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Benazepril [cited 31/3/2021].
- 27. Available from: https://en.wikipedia.org/wiki/Benazepril [cited 31/3/2021].
- 28. Available from: https://www.drugbank.ca/drugs/DB00999 [cited 31/3/2021].
- 29. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Hydrochlorothiazide [cited 31/3/2021].
- 30. Available from: https://en.wikipedia.org/wiki/Hydrochlorothiazide [cited 31/3/2021].
- Parmar V, Chhalotiya U, Shah D, Bhatt K, Baldania S. Quantification of benazepril hydrochloride and hydrochlorothiazide in tablet dosage form by simultaneous equation spectro photometric method. J Appl Chem. 2013; 2013, 5 pages: Article ID 316137. doi: 10.1155/2013/316137.
- Chhalotiya UK, Varsha LP, Dimal AS, Kashyap KB, Sunil LB. Stability indicating LC method for the estimation of benazepril HCl and hydrochlorothiazide in pharmaceutical dosage form, chromatography separation. Techniques; 2014. 5(2):1-7.
- 33. Ashour S, Alhaj A. Sakur2 and Manar Kudemati1, A validated stability-indicating liquid chromatographic method for the simultaneous determination of amlodipine and benazepril in capsules dosage form, Canadian chemical. Transactions. Year 2014 | Volume 2 | Issue 4 |. Page 418-33.
- 34. Safeer K, Anbarasi B, Senthil Kumar N. Analytical Method Development and Validation of amlodipine and hydrochlorothiazide in combined dosage form by RP-HPLC. Int J ChemTech Res. Jan–Mar 2010; 2(1):21-5.