

Review

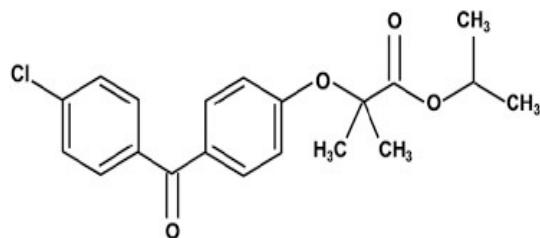
**Reviewing the development and validation of analytical methods
for different drugs utilizing uv spectroscopy**

Banothu Bhadru*, Tadikonda Rama Rao, Sushma Jakinaboina

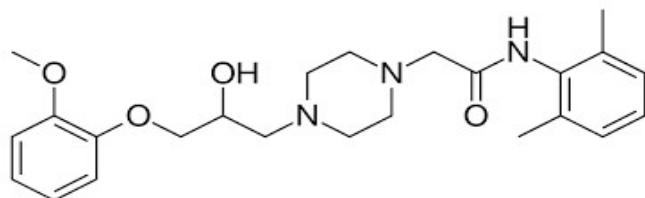
**Associate Professor, Department of Pharmaceutical Analysis, CMR College of Pharmacy, Kandlakoya, Medchal, Hyderabad, Telangana, India-501401.*

CMR College of Pharmacy, Kandlakoya, Medchal, Hyderabad, Telangana, India.

*Author for Correspondence: Dr. Banothu Bhadru


Email: bhadru.banothu@gmail.com

	Abstract
Published on: 14 Aug 2024	UV-visible spectrophotometry refers to absorption spectroscopy. It provides fast and efficient analysis. It is used to quantify nucleic acid and protein content in biological samples and for quality control in drugs and food industries. It is based on the interaction between light and matter. It is used in the wavelength range of 190-900nm. Many drugs are analyzed by UV visible spectrophotometer. Fenofibrate is an oral medication of the fibrate class used to treat abnormal lipid levels. It works by increasing the natural substance that breaks down the fats in the blood. It is less commonly used when compared with statins because it treats a different type of cholesterol abnormality than statins. Ranolazine is an anti-anginal drug. It is used to treat chronic angina (cardiovascular illness). It is used concomitantly with angiotensin receptor β -blockers, and ACE inhibitors. Pantoprazole is an anti-ulcer (proton pump inhibitor). It irreversibly inhibits the gastric H^+/K^+ -ATPase inhibitors. It is metabolized in the liver and excreted through urine.
Published by: DrSriram Publications	
2024 All rights reserved. Creative Commons Attribution 4.0 International License.	Keywords: Fenofibrate, ranolazine, pantoprazole, UV-visible spectrophotometer.


INTRODUCTION

Fenofibrate

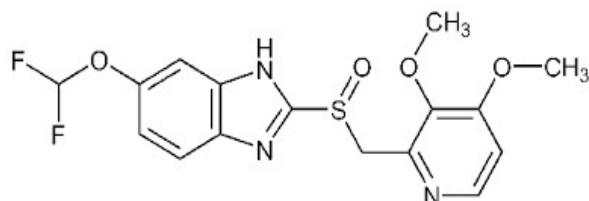

Fenofibrate is used to regulate the lipid composition of the circulatory system. It belongs to the class of drugs known as fibrate, which have structural similarities to other fibrate. The IUPAC name of Fenofibrate is 2-{4-[4-chlorobenzoyl] phenoxy} (2-methyl propanoic acid 1-methyl ethyl ester). Its empirical formula is $C_{20}H_{21}ClO_4$, and its molecular weight is 360.83g/mol. It is a white yellowish crystalline powder that is soluble in organic solvents like ethanol and DMSO, but insoluble in water. Fenofibrate is currently used as an anti-hyperlipidemic drug that directly lowers blood levels of cholesterol, triglycerides, LDL (low-density lipids), and VLDL (very low-density lipids), while simultaneously increasing HDL (high-density lipids). It greatly reduces the levels of hypercholesterolemia and hypertriglyceridemia when administered with statins.

Fig 1: Structure of fenofibrate**Ranolazine**

Ranolazine is an anti-anginal drug. Chemically, it is RS-N-(2,6-dimethylphenyl)-2-[4-hydroxy-3-(2-methoxyphenoxy)-propyl piperazin-1-yl] acetamide. A derivative of piperazine with amide-containing characteristics, ranolazine exhibits anti-anginal and possibly anti-neoplastic effects. It has the chemical formula ($C_{24}H_{33}N_3O_4$). Ranolazine anti-anginal and anti-ischemic effects occur regardless of a decrease in heart rate or blood pressure. Ranolazine is expected to decrease the late sodium current, which will reduce the amount of sodium that reaches the cells of the ischemic myocardium. Consequently, it has been proposed that Ranolazine could potentially reduce calcium absorption indirectly through the sodium/calcium exchanger.

Fig 2: Structure of ranolazine**Pantoprazole**

Pantoprazole is a proton pump inhibitor. Chemically, it is (difluoro methoxy) panthazol-2-[(3)4-dimethoxy pyridine-2-yl] methyl sulfonyl]-1H, 1-3 benzo diazole. They permanently block the stomach H^+/K^+ -ATPase. The proton pump is the last fundamental system that secretes acid in reaction to any kind of stimulus. Since all proton pump inhibitors are acid labile, the tablet should be taken whole and without crushing. It has a 77% bioavailability and negligible first-pass metabolism. The Cytochrome P-450 system breaks down Pantoprazole substantially in the liver before excreting it in the urine.

Fig 3: Structure of pantoprazole**Table 1: Analytical methods**

S.No	Author Name	Journal Name	Title Name	Analytical Conditions
1	Kutty et.al 2012 ¹	International Journal of Pharmaceutical Sciences and Drug Research	Validated Spectrophotometric Method for the Estimation of Fenofibrate in Pure and Pharmaceutical Formulation Using MBTH Reagent	UV-Visible Solvent- Methanol λ_{max} (nm)-596 Linearity-2-5 μ g /ml Slope-0.101 Intercept-0.003 r^2 -0.998 Accuracy-99.36

					Precision Reproducibility %RSD 1.7 repeatability %RSD 1.5
2	P.H. Prathyusha et.al 2010 ²	International Journal of pharmacy & Technology	Spectrophotometric methods for the determination of fenofibrate		Solvent- Methanol λ_{max} (nm)-520 Beer's law-2.5-15 μ g/ml Slope-0.0997 Intercept- 0.3624 r^2 -0.9993 %RSD-0.88
3	Krishna R. Guptha 2010 ³	Pelagia Research Library	Validated spectrophotometric determination of Fenofibrate in formulation		Solvent-Methanol λ_{max} (nm)-287.5 Linearity-10-60 μ g/ml r^2 -0.9994 Regression Equation- $y = 0.044x + 0.05$
4	Sharma S 2012 ⁴	Journal of Drug Delivery & Therapeutics	Quantitative estimation of fenofibrate in bulk drug and tablets by UV-Visible spectroscopy		Solvent-4M Sodium acetate, 1.25M sodium citrate λ_{max} (nm)-296 Beers range-5-35 μ g/ml r^2 -0.999 Regression Equation- $Y=0.059x+0.015$ LOD-0.126 μ g/ml LOQ-0.406 μ g/ml Linearity-1-18 μ g/ml
5	M.J. Krishna 2014 ⁵	International journal of innovative pharmaceutical sciences and research,	Development and validation of a standard addition UV spectrophotometric method for simultaneous estimation of atorvastatin and fenofibrate in bulk and pharmaceutical dosage form		Solvent-Methanol λ_{max} (nm)-245 Linearity-4-20 μ g/ml %RSD-0.316 %Recovery-101.12
6	R.R. Sevda 2011 ⁶	International Journal of ChemTech Research	UV spectrophotometric estimation of rosuvastatin calcium and fenofibrate in bulk drug and dosage form using simultaneous equation method		Solvent- Methanol λ_{max} (nm)-286 Beer's Law-2-20 μ g/ml r^2 -0.999 Slope-0.049 Intercept-0.002
7	G.G Raosaheb 2020 ⁷	World journal of Pharmaceutical and medical research,	Validated Spectrophotometric method for simultaneous estimation of fenofibrate and atorvastatin in synthetic mixture and in bulk tablet dosage form		Solvent- Methanol λ_{max} (nm)-287 Beer's Law-5-30 μ g/ml r^2 -0.9984 Slope-0.0647 Intercept-0.0361 %RSD-0.6802 LOD-0.3017 μ g/ml LOQ-0.9144 μ g/ml
8	D.Nagavalli 2011 ⁸	International journal of Pharmaceutical sciences review and research	Simultaneous estimation of atorvastatin calcium, ezetimibe and fenofibrate in pure and combined tablet dosage form by UV spectrophotometry		Solvent- Methanol λ_{max} (nm)-287 Beer's Law-5-30 μ g/ml %RSD-0.4193 %label claim-99.18
9	Bhavan Patel 2013 ⁹	International journal of pharma research & review	Development and validation of a derivative spectroscopic method for the simultaneous estimation of Rosuvastatin calcium and Fenofibrate in tablets		Solvent- Methanol λ_{max} (nm)-224 Linearity-16-48 μ g/ml Slope-0.00096 Intercept-0.00176 r^2 -0.9996 %recovery-100.92

					%RSD-0.42
10	V. Niraimathi 2015 ¹⁰	International journal of pharma sciences and research	UV Spectrophotometric Determination of Fenofibric Acid By Using Hydrotropy		2M Urea & 1M Sodium citrate used as solubilizing agent. λ_{max} (nm)- 299 Beer's law limit-5-30 μ g/ml r^2 -0.9996 %recovery-99.30-100.99
11	Apeksha Funde 2020 ¹¹	International journal of Chemistry research	Validated stability indicating UV-spectrophotometric simultaneous estimation of rosuvastatin calcium and fenofibrate in bulk and pharmaceutical formulation		Solvent- Methanol, NaOH, HCl , 30% H_2O_2 λ_{max} (nm)-287 concentration range- 4-24 μ g/ml r^2 -0.999 Intercept-0.053 Slope-0.054 %RSD-0.314 %RSD(interday)-0.05 μ g/ml %RSD(intraday)-0.03 μ g/ml
12	Geetha Rajput 2021 ¹²	Pharmaspire	Simultaneous estimation of simvastatin and fenofibrate from their combined dosage form by ultraviolet-visible spectroscopy using the simultaneous equation method		Solvent- Methanol λ_{max} (nm)-287 Beer's law limit- 4.35-26.10 μ g/ml r^2 -0.9984 slope-0.0239 intercept-0.0126 LOD-1.19 μ g/ml LOQ-3.16 μ g/ml
13	Shaikh Nasima Khatun 2020 ¹³	World journal of pharmaceutical sciences	Estimation of Atorvastatin Calcium and Fenofibrate in Human Plasma by UV Spectrophotometric Method		Solvent-Methanol, Acetonitrile λ_{max} (nm)-286 concentration range-1-5 μ g/ml r^2 -0.99978 slope- 0.00197 intercept- 0.00108 %recovery- 100.2-100.4% %RSD-less than 2
14	Narendra 2024 ¹⁴	Asian journal of pharmaceutical research and development	Development and Validation of Fenofibrate in Bulk and Tablets using UV-Spectroscopy: An Anti-Hypercholesterolemic Agent		Solvent- DMF λ_{max} (nm)-290 r^2 -0.999 LOD-0.243 μ g/ml LOQ-0.738 μ g/ml %RSD(interday)-0.284 %RSD(intraday)-0.07
15	Ramesh Jet al, 2013 ¹⁵	Annals of Pharma Research	Method development and validation for the estimation of ranolazine in bulk and in pharmaceutical dosage form by UV-Spectrophotometry		Solvent- Methanol, Water λ_{max} -263nm, 282nm Linearity-10-35 mcg/ml Correlation coefficient-0.9992 LOD-0.0072 μ g/ml LOQ-0.021 μ g/ml
16	Noon A. A. Kamilet al, 2022 ¹⁶	Hacettepe University Journal of the Faculty of Pharmacy	Derivative Spectrophotometric Methods for the Analysis and Stability Studies of Ranolazine in Bulk and Dosage Forms		Solvent- Methanol λ_{max} -283nm, 278nm LOD- 24.0,17.8 μ g/ml LOQ- 73.0,53.6 μ g/ml
17	Jayprakash B. Ugale et al, 2015 ¹⁷	World Journal of Pharmaceutical Research	Development and validation of UV-Spectrophotometric area under curve method for quantitative estimation of ranolazine in API and tablet formulation		Solvent- Methanol, Water λ_{max} -261 to 281 nm Linearity-75-200 μ g/ml. LOD- 10.77 μ g/ml LOQ- 32.63 μ g/ml r^2 - 0.998

18	Patil Shubham Pet al, 2018 ¹⁸	American Journal of PharmTech Research	Development and Validation of UV Spectroscopic Method for Estimation of Ranolazine in Tablet Dosage Form	Solvent- Methanol λ_{max} -235 nm Linearity-2-12 μ g/ml Correlation coefficient-0.999 Melting point- 120-122°C
19	Ashish Sharma et al, 2010 ¹⁹	International Journal of Chem Tech Research	Development and Validation of UV Spectrophotometric Method for the Estimation of Ranolazine in Bulk Drug and Pharmaceutical Formulation	Solvent- Methanol λ_{max} -272 nm Linearity-10-100 μ g / ml LOD- 0.27 μ g / ml LOQ- 0.82 μ g / ml
20	Ramanaiah Ganjet al, 2012 ²⁰	American Journal of Pharm Tech Research	Development and Validation of UV Spectroscopy method for Estimation of Ranolazine in bulk and its Pharmaceutical Formulation	Solvent- Methanol, distilled water, Acetonitrile λ_{max} -230nm Linearity-12-40 μ g/ml Correlation coefficient-0.999 %Recovery-100.2%
21	DVS Roopa Sirisha Doppa et al, 2019 ²¹	Research Journal of Pharmacy and Technology	Development and Validation of UV Spectroscopic Method for the Determination of Ranolazine in Bulk and Formulation	Solvent- Methanol, distilled water, orthophosphoric acid λ_{max} - 271nm Linearity-10-100 μ g/ml LOD-0.807 μ g/ml LOQ-2.4460 μ g/ml Correlation coefficient-0.999 %Recovery-97.25-97.75%
22	Vishakha D. Patel et al, 2016 ²²	Asian Journal of Pharmaceutical Analysis	Second Derivative Spectroscopic Method for Simultaneous estimation of Amiodarone Hydrochloride and Ranolazine in synthetic mixture	Solvent- Synthetic mixture λ_{max} - 249 nm Linearity- 10-200 μ g/ml LOD-0.271 μ g/ml LOQ-0.823 μ g/ml Correlation coefficient-0.9996
23	Vishal Rathod et al, 2023 ²³	Journal of Emerging Technologies and Innovative Research	Development and validation of indicating instrumental method for estimation of ranolazine in bulk and tablet dosage form	Solvent- Methanol λ_{max} -274nm Linearity- 10-60 μ g/ml LOD-0.68 μ g/ml LOQ-2.15 μ g/ml Correlation coefficient-0.999
24	Magesh AR et al, 2021 ²⁴	DerPharmaChemica	Development of Visible Spectrophotometric Methods for the Determination	Solvent- Methanol λ_{max} -432nm Linearity range-25-125 μ g/ml LOD - 0.81 μ g/ml LOQ- 2.23 μ g/ml Correlation coefficient-0.9996
25	Krupa Vyas et al, 2022 ²⁵	Journal of Drug Delivery & Therapeutics	Development of a UV visible spectrophotometric method for simultaneous estimation of Ranolazine and Metoprolol	Solvent- 0.1N HCl λ_{max} - 272nm Linearity range-7.5-37.5ppm LOD- 0.17069ppm LOQ- 0.51724ppm
26	Jitesha Patel et al, 2020 ²⁶	The Pharma Innovation Journal	Novel UV-spectrophotometric & RP-HPLC method development and validation of simultaneous estimation of ranolazine and metformin HCL: A statistical analysis	Solvent- Methanol λ_{max} -237nm LOD- 0.09 μ g/mL LOQ- 0.28 μ g/mL Accuracy- 98.41% to 100.02% Correlation coefficient-0.989
27	Rakesh Kumar Singh et al, 2011 ²⁷	International Journal of Pharmaceutical Sciences and Research	Nanodrop spectrophotometric method development and validation for estimation of ranolazine in their bulk	Solvent- Distilled water λ_{max} -272nm Correlation coefficient-0.9995 Linearity-12.5-2000ppm % RSD less than 2

28	Naveen Kumar GS et al, 2014 ²⁸	Unique Research Journal of Chemistry	Spectrophotometric Method For The Estimation Of Ranolazine In Bulk And Pharmaceutical Formulations	Solvent- Distilled water λmax- 447nm Correlation coefficient-0.9997 Linearity range- 5-25µg/ml
29	Rahul H. Khiste et al, 2019 ²⁹	International Journal of Pharmaceutical & Biological Archives	Simultaneous Equation and Area Under the Curve Spectrophotometric Methods for Estimation of Ranolazine Hydrochloride Presence of its Base-induced Degradation Product: A Comparative Study	Solvent- Methanol λmax- 249nm, 272nm Linearity range- 5-30µg/ml LOD- 0.246µg/ml, 0.358µg/ml LOQ- 0.9256µg/ml, 0.974µg/ml
30	V. Shirisha et al.2018 ³⁰	International Journal of pharmacy and Analytical Research	Analytical Method Development and validation of pantoprazole in tablet dosage form by using UV Spectroscopic method as per ICH Guidelines	Solvent- Water λ max-290nm %recovery 92-102% LOD - 0.1583(µg/ml) LOQ - 0.3333(µg/ml) Linearity range-10-60(µg/ml) Correlation Coefficient NLT- 0.999 Robustness- 0.174 Precision - 0.055 Intermediate Precision-0.14
31	Shamkant S. Patil et al. 2008 ³¹	International Journal of Chemical Sciences	Spectrophotometric Estimation of pantoprazole in tablet dosage form	Solvent- Methanol λmax - 290, 282, 286-296nm Beers-Lambert's range (µg/mL) 5-35 10-100 5-40 Coefficient of correlation - 0.999934, 0.999973, 0.99996 LOD- 0.15,0.35,0.1 LOQ- 0.45,1.05,0.30
32	P. Ravi Kumar et al. 2006 ³²	E-Journal of Chemistry	Simultaneous Estimation of Domperidone and Pantoprazole in Solid Dosage Form by UV Spectrophotometry	Solvent- Methanol λ max-216nm, 287nm, 290nm Linearity- 0-50 mcg/mL
33	B. Shrestha et al. 2019 ³³	Research of Journal of Life Sciences, Bioinformatics, Pharmaceutical Sciences	A Novel Difference Spectrophotometric Method or the determination of Pantoprazole in tablet Dosage form	Solvent- Methanol λ max-284nm,295nm Linearity- 5-50 µg/mL Accuracy- 98.3-102.4%
34	Rajnish Kumar et al. 2011 ³⁴	Journal of Chemical and Pharmaceutical Research	Development of UV Spectrophotometric method for estimation of Pantoprazole in pharmaceutical dosage forms	Solvent-Water λ max - 292nm Beer's law limit- 5-70 µg /mL Molar absorptivity, L mol ⁻¹ cm ⁻¹ 1.52x10 ⁴ Regression equation Slope (m) 0.399 Intercept (c) 0.01547 Correlation coefficient 0.9998
35	Basavaiah et al. 2009 ³⁵	Iranian Journal of chemical and Engineering	Spectrophotometric Determination of Pantoprazole Sodium in pharmaceuticals using N- Bromo succinimide Methyl Orange and Indigo Carmine as Reagents	Solvent- Water λ max- 520-610nm Beer's law limits, µg mL ⁻¹ 0.1 - 2.0, 0.5 - 6.0 Sandell sensitivity, µg cm ⁻² 0.003 - 0.01 LOD - 0.02- 0.06µg/ml LOQ - 0.07 -0.19 µg/ml
36	Gaur A et al. 2018 ³⁶	International Journal of Pharmaceutical Quality Assurance	Development and Validation of UV Spectroscopic Method for Simultaneous Estimation of	Solvent- Distilled water λmax-289 nm, 267.2 nm

			Pantoprazole and Cinitapride in Bulk and in Capsule Dosage Form	Beer's law Concentration 13-65 μ g/ml and 1-5 μ g/ml Accuracy- 101.32 %,98.9 % Accuracy (% Recovery) 100.153 99.25 Repeatability (% RSD) 1.417 1.003 Intraday analysis (% RSD) 0.360 0.243 Intraday analysis (% RSD) 0.305 0.300 LOD (μ g/ml) - 0.0820 0.1092 LOQ (μ g/ml) - 0.247 0.331
37	Kaveri Chandrakant Dulange et al. 2019 ³⁷	Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry	Development and Validation of UV Spectrophotometric Method for Simultaneous Estimation of Domperidone and Pantoprazole Sodium in bulk and pharmaceutical dosage form	Solvent- Methanol λ_{max} -288nm,291nm Beer's Law limit - 5-25 μ g/ml, 5-25 μ g/ml LOD (μ g/ml)- 0.045, 0.01 LOQ (μ g/ml)- 0.122 0.059 Robustness (%RSD)- 0.13, 0.191 Ruggedness(%RSD)- 0.137, 0.1 Accuracy - 99-100%, 98-99%
38	Barri Swathi et al. 2019 ³⁸	Indo American Journal of Pharmaceutical Research	Development and validation of new Analytical method for the Simultaneous Estimation Pantoprazole and Domperidone by UV Spectrophotometry	Solvent- Methanol λ_{max} -290nm,287nm Linearity- 1-15 μ g/ml, 1-50 μ g/ml Recovery- 99 -103%
39	Incilay Suslu et al. 2004 ³⁹	Fabad Journal of Pharmaceutical Sciences	Determination of pantoprazole in tablet dosage forms by two different spectrophotometric methods	Solvent- Methanol λ_{max} -295-305nm Correlation coefficient (r) 0.999 0.999 LOQ- 2.31 0.5 μ g/ml LOD- 0.69 0.15 μ g/ml Linearity range (μ g mL ⁻¹) 2.50 - 80.00 ,0.5 - 70
40	Nejal M. Bhatt et al. 2014 ⁴⁰	The Scientific World Journal	Manipulating Ratio Spectra for the Spectrophotometric Analysis of Diclofenac Sodium and Pantoprazole Sodium in Laboratory Mixtures and Tablet Formulation	Solvent- Methanol λ_{max} -251-318 Linearity- 2.0-24.0 μ g/mL, 2.0-20.0 μ g/mL Accuracy-99.25% Precision-101.05%
41	Dimal A. Shah et al.2013 ⁴¹	Hindawi Publishing Corporation	Simultaneous Estimation of Pantoprazole Sodium and Levosulpiride in Capsule Dosage Form by Simultaneous Equation Spectrophotometric Method	Solvent- Methanol λ_{max} - 290 ,232 nm Linearity- 4-12 μ g/mL, 8-20 μ g/mL % recovery-100.23- 100.99%,100.51-100.94% Robustness 98.45-100.48% 99.12-100.65%
42	Jigar Pandya et al.2012 ⁴²	Journal of Pharmaceutical Science and Bioscientific Research	Development and Validation of Differential Spectrophotometric method for Determination of Pantoprazole in Tablet Dosage Form	Solvent- Water λ_{max} - 296 ,319 nm Linearity- 5-25 μ g/ml Precision (RSD)%- 0.5-0.9 LOD- 0.0954 LOQ 0.2891 Correlation Coefficient- 0.997 % Recovery- 99.06%

43	Suresha D. N et.al. 2002 ⁴³	European Journal of Pharmaceutical and Medical Research	A Novel Method Development and Validation of Pantoprazole in Pure and Capsule Dosage Forms by using UV- Spectrophotometric Method	Solvent- 0.1N NaOH λ_{max} - 288- 298nm Linearity- 3-18 μ g/ml correlation coefficient- 0.9999 regression equation- $Y=0.031x+0.0025$ Sandell's Sensitivity 0.0023 %Recovery - 99.29% - 99.92%
44	Smita Mujbaile et al.2012 ⁴⁴	IOSR Journal of Pharmacy and Biological Sciences	Simultaneous Estimation of Ondansetron and Pantoprazole in Solid Dosage Form by First Derivative Spectroscopy Method	Solvent- Water λ_{max} - 288.5- 310 nm concentration range-0.5- 2.5 μ g/ml, 5-25 μ g/ml Regression equation- $y=0.001x-0.0011$, $y=0.0118x+0.0117$.
45	Abdel-Aziz M. Wahbi et al. 2002 ⁴⁵	Journal of Pharmaceutical and Biomedical Analysis	Spectrophotometric determination of omeprazole, lansoprazole and pantoprazole in pharmaceutical formulations	Solvent- NaOH λ_{max} - 306.2, 292.4, 295.4nm Linearity-0.5 / 3.5 mg/ml ⁻¹ Repeatability-0.3-0.5%

CONCLUSION

Spectrophotometric methods are being used for the analysis of fenofibrate in single and combined formulations. The majority of the techniques use UV absorbance detection because it provides the highest levels of precision, reliability, and simplicity. Additionally, it is a rapid and robust quantitative analytical method.

REFERENCES

1. Sheeja Velayudhan Kutty, Susamma Cicy Eapen, et al. Validated UV-Visible Spectrophotometric Method for the Estimation of Fenofibrate in Pure and Pharmaceutical Formulation Using MBTH Reagent. International Journal of Pharmaceutical Sciences and drug research. 2012; 4(1):74-76.
2. P.H. Prathyusha, B. Anupama, et al. Spectrophotometric methods for the determination of fenofibrate. International Journal of pharmacy & Technology. 2010; 2(3):661-664.
3. Krishna R. Gupta, Sonali S. Askarkar, et.al, validated Spectrophotometric determination of fenofibrate in formulation, Pelagia Research Library, 2010, 1 (1): 173-178.
4. Jat R.K, Sharma S, et al., Quantitative estimation of fenofibrate in bulk drug and tablets by UV visible spectroscopy, Journal of drug delivery & therapeutics, 2012, 2(3): 129-131.
5. Mudraboina Johnny Krishna et al., development and validation of a standard addition UV spectrophotometric method for simultaneous estimation of atorvastatin and fenofibrate in bulk and pharmaceutical dosage form, International journal of innovative pharmaceutical sciences and research,2014, 2(11), 2792-2799
6. R.R. Sevda, A.S. Ravetkar, P.J. Shirote, UV spectrophotometric estimation of rosuvastatin calcium and fenofibrate in bulk drug and dosage form using simultaneous equation method, International Journal of Chemtech Research, 2011, 3(2), 629-635.
7. Godge Ganesh Raosaheb, Garje Mahesh Arjun, et al. Validated Spectrophotometric method for simultaneous estimation of fenofibrate and atorvastatin in synthetic mixture and in bulk tablet dosage form, World journal of Pharmaceutical and medical research,2020, 6(7), 170-176.
8. D. Nagavalli, Balipaka Srinivas, C. Kalyan chakravarthi, Simultaneous estimation of atorvastatin calcium, ezetimibe and fenofibrate in pure and combined tablet dosage form by UV spectrophotometry, International journal of Pharmaceutical sciences review and research,2011, 8(2), 40-44.
9. Bhavna Patel11, Alpa Jadav1, Heena Solanki et.al., development and validation of a derivative spectroscopic method for the simultaneous estimation of rosuvastatin calcium and fenofibrate in tablets, International journal of pharma research & review,2013, 2(7), 1-6.
10. V. Niraimathi, A. Jerad Suresh, A. Alageswaran, UV Spectrophotometric Determination of Fenofibric Acid By Using Hydrotropy, International journal of pharma sciences and research, 2015, 6(2), 451-458.
11. Apeksha funde, Jayshreekokat, Validated stability indicating UV-spectrophotometric simultaneous estimation of rosuvastatin calcium and fenofibrate in bulk and pharmaceutical formulation, International journal of Chemistry research,2021,5(1),1-8.

12. Geeta Rajput, Saranjit Singh et al., Simultaneous estimation of simvastatin and fenofibrate from their combined dosage form by ultraviolet-visible spectroscopy using the simultaneous equation method, Pharmaspire, 2021;13(1):117-121.
13. Shaikh Nasima Khatun, P. Sridevi et al., Estimation of Atorvastatin Calcium and Fenofibrate in Human Plasma by UV Spectrophotometric Method, World journal of pharmaceutical sciences, 2020; 8(10): 19-24.
14. Narender Boggula, Bhadru Banotu et al. Development and Validation of Fenofibrate in Bulk and Tablets using UV-Spectroscopy: An Anti-Hypercholesterolemic Agent, Asian journal of pharmaceutical research and development, 2024; 12(2):160-164.
15. Ramesh J, Rajasekhar K, Kiran Gandhi R, and Senthil Kumar N. Method development and validation for the estimation of ranolazine in bulk and in pharmaceutical dosage form by UV-spectrophotometry. Annals of Pharma Research, 2013, 01 (01), 4-7.
16. Noon A. A. Kamil, Shaza W. Shantier, Elrasheed A. Gadkariem. Derivative Spectrophotometric Methods for the Analysis and Stability Studies of Ranolazine in Bulk and Dosage Forms. Hacettepe University Journal of the Faculty of Pharmacy, 2022, 42(1), 13-21.
17. Jayprakash B. Ugale and Sugandha V. Mulgund. Development and validation of a UV spectrophotometric area under curve method for the quantitative estimation of ranolazine in API and tablet formulation, World Journal of Pharmaceutical Research, 4(5), 2665-2672.
18. Patil Shubham P., Sonar Pratik A., Sanap Ganesh M., Patil Dnyaneshwar S., Kalpesh V. Sonar, Tushar a. Deshmukh. Development and Validation of UV Spectroscopic Method for Estimation of Ranolazine in Tablet Dosage Form. American Journal of PharmTech Research 2018, 2249-3387
19. Ashish Sharma, Dev Prakash, Sachin Kumar Singh. Development and Validation of UV Spectrophotometric Method for the Estimation of Ranolazine in Bulk Drug and Pharmaceutical Formulation. International Journal of ChemTech Research, 2010, 2(4) 1945-1948.
20. Ramanaiah Ganji, D. Ramachandran, G Srinivas, JayapalGowardhane, Purnachanda Rao. Development and Validation of UV Spectroscopy method for Estimation of Ranolazine in bulk and its Pharmaceutical Formulation. American Journal of PharmTech Research 2012.
21. DVS RoopaSirishaDoppa, Sathish Kumar Konidala, Sheik Khanabhi. Development and Validation of UV Spectroscopic Method for the Determination of Ranolazine in Bulk and Formulation. Research J. Pharm. and Tech. 2019; 12(10):5007-5010.
22. Vishaka D. Patel, Hasumati A. Raj, Nirav K. Gheewala. Second Derivative Spectroscopic Method for Simultaneous estimation of Amiodarone Hydrochloride and Ranolazine in synthetic mixture. Asian J.Pharm.Ana, 2016; 6(1), 23-30.
23. Vishal Rathod, Alok Kadam, Arjun Bembade, O.G. Bhusnure. Development and validation of indicating instrumental method for estimation of ranolazine in bulk and tablet dosage form. Journal of Emerging Technologies and Innovative Research, 2023, 10(4).
24. Magesh AR, Kavitha D and Dhanaraju MD. Development of Visible Spectrophotometric Methods for the Determination of Ranolazine in Bulk and Pharmaceutical Dosage Form. DerPharmaChemica, 2021, 13(5): 18-25.
25. Vyas K, Soniwala M, Vyas A, Shah N, Development of a UV- visible spectrophotometric method for simultaneous estimation of Ranolazine and Metoprolol, Journal of Drug Delivery and Therapeutics. 2022; 12(3-S):64-72
26. Jitesha Patel, Parth Patel and Rajashree Mashru. Novel UV-spectrophotometric & RP-HPLC method development and validation of simultaneous estimation of ranolazine and metformin HCL: A statistical analysis. The Pharma Innovation Journal 2020; 9(7): 50-57
27. Rakesh Kumar Singh, Pankaj Singh Patel, Paras Malik and Tej Pratap Singh. Nanodrop spectrophotometric method development and validation for estimation of ranolazine in their bulk. International Journal of Pharmaceutical Sciences and Research, 2011, 2(4)
28. Naveen Kumar GS, Harish KH, Dinesh M and Hanumanthachar Joshi. Spectrophotometric method for the estimation of ranolazine in bulk and pharmaceutical formulations. Unique Research Journal of Chemistry, 2014, 02 (1).
29. Rahul H. Khiste, Aishwarya S. Ambekar, Nilesh S. Kulkarni. Simultaneous Equation and Area under the Curve Spectrophotometric Methods for Estimation of Ranolazine Hydrochloride Presence of its Base-induced Degradation Product: A Comparative Study. International Journal of Pharmaceutical & Biological Archives 2019; 10(3):202-206.
30. V.Shirisha, B. Mahender, et.al. Analytical Method Development and validation of pantoprazole in tablet dosage form by using UV Spectroscopic method as per ICH Guidelines, International journal of pharmacy and analytical research, 2018, 7(2), 172-178.
31. Shamkant S. Patil, P.N. Dhabale, B.S. kuchekar, Spectrophotometric Estimation of pantoprazole in tablet dosage form, International journal of chemical sciences, 2008, 6(4), 1984-1990.

32. P. Ravi Kumar, P. Bhanu Prakash, M. Murali Krishna, M. Santha Yadav, C. Asha Deepathi, Simultaneous Estimation of Domperidone and pantoprazole in solid dosage form by UV Spectrophotometry, E-Journal of chemistry, 2006, 3(3), 142-145.
33. B. Shrestha, A. Koirala, S. Basnett, H. BasnettA Novel Difference Spectrophotometric Method or the determination of Pantoprazole in tablet Dosage form, Research of journal of life sciences, bioinformatics, pharmaceutical sciences, 2019;5(1),725-734.
34. Rajnish Kumar, Harinder Singh and Pinderjit Singh. Development of UV Spectrophotometric method for estimation of Pantoprazole in pharmaceutical dosage forms, Journal of chemical and pharmaceutical research, 2011; 3(2), 113-117.
35. Basavaiah, et.al., Spectrophotometric Determination of Pantoprazole Sodium in pharmaceuticals using N-Bromo succinimide Methyl Orange and Indigo Carmine as Reagents, Iranian journal of chemical and engineering, 2009;28(1), 31-36.
36. Gaur A, Yashwant, Development and Validation of UV Spectroscopic Method for Simultaneous Estimation of Pantoprazole and Cinitapride in Bulk and in Capsule Dosage Form, International journal of pharmaceutical quality assurance, 2018; 9(4), 368-372.
37. Kaveri Chandrakant Dulange, Mallinath Shankarappa Kalshetti et.al., Development and Validation of UV Spectrophotometric Method for Simultaneous Estimation of Domperidone and Pantoprazole Sodium in bulk and pharmaceutical dosage form, Asian journal of pharmaceutical analysis and medicinal chemistry, 2019;7(2), 39-47.
38. Barri Swathi, B. Subramanyam, B. Dharmateja, M. Hari Babu, D. Kiran, Development and validation of new Analytical method for the Simultaneous Estimation Pantoprazole and Domperidone by UV Spectrophotometry, Indo American journal of pharmaceutical research, 2019;9(5),1993-2000.
39. Incilay Suslu, Sacide Altinozildiz, Emine yildiz, Determination of pantoprazole in tablet dosage forms by two different spectrophotometric methods, Fabad journal of pharmaceutical sciences, 2004; 28, 85-92.
40. Nejal M. Bhatt, Vijay D. Chavada, Mallika Sanyal, and Pranav S. Shrivastav, Manipulating Ratio Spectra for the Spectrophotometric Analysis of Diclofenac Sodium and Pantoprazole Sodium in Laboratory Mixtures and Tablet Formulation, The scientific world journal , 2014; 1-10.
41. Dimal A. Shah, Akash Patel, Sunil L. Baldania, Usmangani K. Chhalotiya, and Kashyap K. Bhatt, Simultaneous Estimation of Pantoprazole Sodium and Levosulpiride in Capsule Dosage Form by Simultaneous Equation Spectrophotometric Method, Hindawi publishing corporation, 2013,1-4.
42. Jigar Pandya, Mr Sagar Solanki, Dr. Mandev Patel, Development and Validation of Differential Spectrophotometric method for Determination of Pantoprazole in Tablet Dosage Form, Journal of pharmaceutical science and bioscientific research,2012;2(1),1-4.
43. Suresha D. N., Akza T. Mony, Anagha Vinod, Lukman, Sachith M. P., Shebin John, A Novel Method Development and Validation of Pantoprazole in Pure and Capsule Dosage Forms by using UV-Spectrophotometric Method, European journal of pharmaceutical and medical research, 2020;7(4),604-607.
44. Smita Mujbaile, Priya Prasad, Sanjay Wate, Simultaneous Estimation of Ondansetron and Pantoprazole in Solid Dosage Form by First Derivative Spectroscopy Method, IOSR journal of pharmacy and biological sciences, 2012;4(4), 05-08.
45. Abdel-Aziz M. Wahbi, Omayma Abdel-Razak, Azza A. Gazy, Hoda Mahgoub, Marwa S. Moneeb, Spectrophotometric determination of omeprazole, lansoprazole and pantoprazole in pharmaceutical formulations, Journal of pharmaceutical and biomedical analysis, 2002;30,1133-1142.