

International Journal of Pharmacy and Analytical Research (IJPAR)

IJPAR | Vol.13 | Issue 3 | Jul - Sept -2024

www.ijpar.com

ISSN: 2320-2831

DOI : <https://doi.org/10.61096/ijpar.v13.iss3.2024.426-433>

Review

A Review Of Indian Plants With Wound Healing Property

S.P. Janani^{1*}, P. Amudha²

¹Scholar, Department of Pharmacology, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai – 600097, Tamil Nadu, India.

²HOD, Department of Pharmacology, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai – 600097, Tamil Nadu, India.

*Author for Correspondence: S.P. Janani
Email: jananiparthisp@gmail.com

	Abstract
Published on: 24 Sept 2024	Wounds are caused by damage to the outermost layer of the skin that affects the epidermal tissue. The Wound Healing Society defines a wound as physical injury that induces an opening or break in the skin, disrupting its normal structure, function, and mechanism. Wound healing is defined as a complicated, dynamic process that restores anatomic continuity and function. This process often involves the use of various plants that possess antibacterial, antioxidant, antiseptic, and healing properties. Most of the pharmaceuticals used for the wound healing process are derived from plants, which have substantial potential for wound management and treatment. India offers a diverse range of plants with potential wound-healing properties. This review aims to compile specific Indian plants documented for their wound healing properties, along with their botanical name, family, part used, and wound model.
Published by: DrSriram Publications	
2024 All rights reserved. Creative Commons Attribution 4.0 International License.	
	Keywords: Excision, incision, burn, wound, extract.

INTRODUCTION

The wound is referred to as a damage in the outermost layer of the skin or an injury to living tissue. These are the primary causes of physical disabilities. Wounds are the disturbed condition of tissue caused by biological, physical, chemical, immunological, or microbiological assaults, often resulting in loss of function. Wound Healing Society defines a wound as a physical injury that induces a break or opening in the skin, disrupting its normal structure and function [1]. A wound's genesis may be unintentional or deliberate, or it may be a result of medical procedure or disease process [2]. Several different kinds of wounds, including incised wounds, excised wounds, burns, lacerated, abrasive, contusions, and ulcers [3]. Reconstruction of skin and physiological conditions requires the use of proper healing techniques. As soon as possible after the damage, the wound starts to heal [4]. The intricate process of healing entails the skin or injured organs and repairing themselves back to normal. To restore skin damage, a series of complex biochemical processes occur in a precisely coordinated sequence. The four primary phases of healing process are hemostasis, inflammatory, proliferative, and remodeling phases [5]. The

wound healing mechanism restores injured tissue and maintains tissue homeostasis. New tissue creation is a complex process that includes inflammation, angiogenesis, granulation tissue production, re-epithelialization, and ECM rebuilding. When the skin is injured, immune cells such as fibroblasts, keratinocytes, and macrophages travel to the area to begin the healing process. The migration of cells to the wound is a crucial step in the healing process [6].

After an injury occurs, hemostasis and coagulation take place in the wound site. The main aim of hemostasis is to prevent exsanguination. Following the hemostasis phase, inflammatory phase starts as promptly as possible following the injury and extends for 24 to 48 hours, although in certain situations, it may extend a maximum of fourteen days. The inflammatory phase triggers a hemostatic mechanism to instantly reduce bleeding and form blood clots at the wound site by the constriction of blood vessels and aggregation of platelets, followed by dilation of blood vessels and phagocytosis to cause inflammation at the injury site, which are the hallmarks of this stage [7].

Third phase is the fibroblastic phase, which can extend for 2 to 3 weeks. It consists of three primary stages: the granulation stage, contraction stage, and epithelialization. During the process of granulation stage, new capillaries are created, and fibroblasts create a collagen bed. Collagen and glycosaminoglycans are two of the several materials produced by fibroblasts that are necessary for wound healing [8].

Finally, the remodeling stage can extend from two weeks to two years. This stage promotes collagen synthesis and the formation of scar tissue. Collagen is cross-linked between molecules through hydroxylation, depending on vitamin C, which increases tissue tensile strength. Scar tissues grow 80% stronger than the original, and the scar flattens.

The wound healing process is greatly aided by numerous types of Ayurvedic botanicals. Because they encourage the repair mechanisms naturally, plants are more effective healers [9]. More than 70% of pharmaceuticals used in wound healing are obtained from plants, 20% are obtained from minerals, and the remaining are from animal products [10]. The purpose of this review is to generate a list of Indian plants that have been previously documented. This list includes the botanical name, family, part used, and wound model for several medicinal plants that can cure wounds which are emphasized here.

***Abutilon indicum* L.**

Abutilon indicum (Malvaceae) consists of alkaloids, flavonoids, steroids, saponins, and amino acids. The ethanolic extract of *Abutilon indicum* showed a substantial increase in tissue breaking strength, rate of wound contraction, tissue granuloma strength, and decreased epithelialization period in the incision, excision, and dead space wound models in Albino rats. [11].

***Acalypha indica* L.**

Acalypha indica leaf (Euphorbiaceae) revealed that saponins, tannins, terpenoids, flavonoids, and cardiac glycosides, as well as cyanogenic glycosides and polyphenol compounds, are all effective anti-oxidants. In *Mus musculus* mice, the ethanolic leaf extract of *Acalypha indica* increased the wound contraction rate, shortened the epithelialization period, and promoted the healing process in incision wound models [12].

***Achyranthes aspera* L.**

Achyranthes aspera (Amaranthaceae) contains steroids, terpenoids, alkaloids, and flavonoids [13]. In several regions of Ethiopia, people have traditionally utilized the leaves of *Achyranthes aspera* to cure wounds [14]. *Achyranthes aspera* leaf aqueous and ethanol extracts substantially enhanced the skin breaking strength and wound closure rate in both the incision wound model and the excision wound model respectively, and showed significant healing properties in Wister rats [15].

***Adhatoda vasica* Nees.**

Adhatoda vasica (Acanthaceae) has alkaloids such as quinazoline, tannins, flavonoids, essential oil, and vasicinone [16]. In Swiss albino mice, methanolic leaf of *A. vasica*'s extract demonstrated enhanced healing activity in the excision wound model [17].

***Allamanda cathartica* L.**

A. cathartica L. (Apocynaceae) consists of alkaloids, phenolic compounds, steroids, flavonoids, terpenes, lactones, and carbohydrates [18]. In both the excision wound model and the incision wound model, *Allamanda cathartica*'s aqueous leaf extract demonstrated potential wound healing activity by increasing the rate of wound closure, weight of granulation tissue, tensile strength, and decreasing the epithelialization period [19].

***Aloe barbadensis* Miller**

A. barbadensis (Liliaceae) is used for wound healing as well as for its anti-inflammatory and anti-ulcer properties. Aqueous extract of *A. barbadensis* accelerated wound healing and significantly increases the rate of wound contraction in the excision wound model [20].

***Annona squamosa* L.**

Annona squamosa L. (Annonaceae) contains Vitamin C and tannins which have inflammatory property, wound healing property, and insecticidal property. Methanolic leaf extract of *A. squamosa* increased tensile strength and wound contraction rate respectively, in both the incision and excision wound models, and showed significant wound healing activity [21].

Carica papaya

Carica papaya (Caricaceae) contains flavonoids, alkaloids, phenolic chemicals, and cyanogenetic substances. Aqueous and ethanolic seed extracts of *C. papaya* showed a greater rate of wound contraction and significantly improved the healing process in the excision wound model [22, 23].

***Cassia tora* Linn.**

Cassia tora Linn. (Leguminosae) contains anthrone, flavonoids, glycosides, tannin, cinnamaldehyde and essential oils found in plant extracts [24]. Methanolic leaf extract of *Cassia tora* demonstrated better wound closure rate, rapid epithelialization and increased skin breaking strength in excision and incision wound models, and had effective wound healing properties [25].

***Centella asiatica* (Linn.)**

Centella asiatica (Apiaceae) has phytochemicals including alkaloids, tannins, phenolic compounds, saponins, flavonoids, and sterols [26]. Alcoholic leaf extract of *C. asiatica* significantly improved tissue tensile strength, epithelialization period, increased wound closure and tissue granulation weight in the incision, excision and dead space models [27].

***Daucus carota* L.**

Daucus carota (Apiaceae) has phytochemicals such as phenolics, carotenoids, ascorbic acid, and polyacetylenes [28]. *D. carota*'s ethanolic root extract decreased the wound area, epithelialization period and also enhanced the wound breaking strength and rate of wound contraction in the incision and excision wound models, respectively [29].

***Erythrina indica* Linn.**

Coral tree, or *Erythrina indica* (Leguminosae) contains phytoconstituents like proteins, lecithin, alkaloids, flavonoids, pterocarpans, triterpenes, and steroids [30]. In Wister albino rats, methanolic extract of *Erythrina indica* bark demonstrated potential wound healing activity in the excision wound model [31].

***Mimusops elengi* Linn.**

Mimusops elengi Linn (Saptaeae) bark contains a variety of triterpenoid saponins, alkaloid isoretronecyl tiglate, taraxerol, taraxerone, ursolic acid, etc. *Mimusops elengi*'s methanolic extract efficiently encouraged the wound contraction rate, enhanced the tissue breaking strength in the incision wound model, and healed dead space wounds [1].

***Moringa oleifera* Lam.**

Moringa oleifera (Moringaceae) consists of antioxidant compounds such as phenolics, flavonoids, and carotenoids [32]. Ethanolic leaf extract of *Moringa oleifera* proved significant healing properties in the incision wound model and aqueous extract of *M. oleifera* leaf demonstrated increased wound closure rate, tensile strength, granuloma breaking strength and decreased scar area in the excision, incision, and dead space wound models [33, 34].

***Ocimum sanctum* L.**

Ocimum sanctum L. (Labiateae) stems and leaves contain biologically active elements such as saponins, flavonoids, triterpenoids, phenolic compounds, and tannins [35]. *O. sanctum* essential oil-based ointment improved tissue granulation, epithelialization period, and tensile strength in Wistar Albino rats [36]. *O. sanctum*'s antioxidant qualities may promote faster wound healing and help treat hypertrophic scarring [37].

***Solanum xanthocarpum* Schrad. And Wendl.**

Solanum xanthocarpum (Solanaceae) contains flavonoids, alkaloids, saponins, sterols, carbohydrates, and aminoacids [38]. Methanolic fruit extract of *Solanum xanthocarpum* showed a greatly increased rate of wound closure and breaking strength in the excision wound model and incision wound model respectively [39]

Below table lists a few Indian plants that are reported for their wound-healing properties.

Botanical name	Family	Part used	Wound model	Reference
<i>Abelmoschus esculentus</i> L.	Malvaceae	Fruit	Excision wound model	[40]
<i>Aegle marmelos</i> L.	Rutaceae	Fruit	Incision, Excision, & dead space	[41]
<i>Allium cepa</i> Linn.	Liliaceae	Pulp	Incision wound model	[42]
<i>Anacardium occidentale</i> L.	Anacardiaceae	Leaf	Excision wound model	[43]
<i>Areca catechu</i> L.	Arecaceae	Seeds	Burn wound model	[44]
<i>Aristolochia bracteolata</i> Lam.	Aristolochiaceae	Leaf	Excision, incision, and dead-space	[45]
<i>Butea monosperma</i> Lam.	Papilionaceae	Bark	Excision wound model	[46]
<i>Calendula officinalis</i> Linn.	Compositae	Flower	Excision wound	[47]
<i>Calotropis gigantea</i> Linn.	Asclepiadaceae	Root, bark	Incision, excision and dead space	[48]
<i>Cassia fistula</i> Linn.	Leguminosae	Leaves	Excision wound model	[49]
<i>Catharanthus roseus</i> L.	Apocynaceae	Flower	Excision, incision & dead space	[50]
<i>Cleome viscosa</i> Linn.	Capparaceae	Seeds	Incision and excision wounds	[51]
<i>Ficus benghalensis</i> Linn.	Moraceae	Bark	Excision and incision	[52]
<i>Ficus racemosa</i> Linn.	Moraceae	Root	Incision and excision wounds	[53]
<i>Heliotropium indicum</i> Linn.	Boraginaceae	Leaves	Incision, excision and dead space	[54]
<i>Hemidesmus indicus</i> R. Br.	Apocynaceae	Roots	Excision wound model	[55]
<i>Hibiscus rosa sinensis</i> L.	Malvaceae	Flower	Incision, excision and dead space	[56]
<i>Ixora coccinea</i> L.	Rubiaceae	Leaves	Excision wound model	[57]
<i>Jatropha curcas</i> L.	Euphorbiaceae	Leaves	Excision wound model	[58]
<i>Jasminum grandiflorum</i> Linn	Oleaceae	Flower	Excision wound model	[59]
<i>Lawsonia inermis</i> Linn.	Lythraceae	Leaves	Excision, incision & dead space	[60]
<i>Leucas lavandulaefolia</i> Rees.	Lamiaceae	Whole plant	Excision and incision	[61].
<i>Madhuca longifolia</i> L.	Sapotaceae	Leaves, bark	Incision & excision wound models	[62]
<i>Mimosa pudica</i> Linn.	Fabaceae	Root	Excision, incision, burn, dead space	[63]
<i>Morinda citrifolia</i> L.	Rubiaceae	Leaves	Dead space and excision wounds	[64]
<i>Morus alba</i> Linn.	Moraceae	Leaves	Burn wound model	[65]
<i>Nicotiana tabacum</i> L.	Solanaceae	Stem	Excision wound model	[66]
<i>Phyllanthus emblica</i> L.	Euphorbiaceae	Bark	Incision and excision models	[67]
<i>Pongamia pinnata</i> Linn.	Fabaceae	Bark	Excision and incision wounds	[68]
<i>Punica granatum</i> L.	Lythraceae	Peel & pulp	Excision wound model	[69]
<i>Quercus infectoria</i>	Fagaceae	Galls	Incision, excision & dead space.	[70]
<i>Rubia cordifolia</i> Linn.	Rubiaceae	Root	Excision wound model	[71]
<i>Sesamum indicum</i> L.	Pedaliaceae	Seed & oil	Excision, incision, burn, dead space	[72]
<i>Tephrosia purpurea</i> Linn.	Leguminosae	Aerial parts	Excision, incision, & dead space.	[73]
<i>Terminalia arjuna</i> Roxb.	Combretaceae	Bark	Excision and incision	[74]
<i>Terminalia catappa</i> L.	Combretaceae	leaf	Incision wound model	[75]

<i>Terminalia chebula</i> Retz.	Combretaceae	Leaf	Excision & incision wound models	[76]
<i>Thespesia populnea</i> L.	Malvaceae	Fruit	Excision & incision	[77]
<i>Vernonia arborea</i>	Asteraceae	Bark	Excision, incision, and dead space.	[78]
<i>Wedelia chinensis</i> Merr.	Asteraceae	whole plant	Excision wound model	[79]
<i>Ziziphus mauritiana</i> Lam.	Rhamnaceae	Leaf	Excision wound model	[80]

CONCLUSION

The biological process of wound healing starts with injury and terminates with scar formation. The purpose of wound healing is to reduce complications that prevent the healing process and improve the healing mechanism, and also reduce the occurrence of infections caused by wounds. Wounds are naturally treated and prevented by using numerous herbs. In India, several plants and their parts have potential wound healing properties, and they are used in preventing and treating many kinds of wounds. Herbal drugs are becoming increasingly popular in both developed and developing countries since they are safer and better tolerated than allopathic drugs. This review unequivocally asserts that a great deal of herbal plants are more potent healers since they spontaneously activate the healing process. Thus, several Indian plants that have the ability to cure wounds were emphasized in this review.

REFERENCES

1. Kumarasamyraja, D., N. Jeganathan, and R. Manavalan, A review on medicinal plants with potential wound healing activity. *Int J Pharm Pharm Sci*, 2012. 2: p. 105-11.
2. Velnar, T., T. Bailey, and V. Smrkolj, The wound healing process: an overview of the cellular and molecular mechanisms. *Journal of international medical research*, 2009. 37(5): p. 1528-1542.
3. Somboonwong, J., et al., Wound healing activities of different extracts of *Centella asiatica* in incision and burn wound models: an experimental animal study. *BMC complementary and alternative medicine*, 2012. 12(1): p. 1-7.
4. Dan, M.M., et al., Wound healing: concepts and updates in herbal medicine. *Int J Med Res Health Sci*, 2018. 7(1): p. 170-181.
5. Nagori, B.P. and R. Solanki, Role of medicinal plants in wound healing. *Research Journal of Medicinal Plant*, 2011. 5(4): p. 392-405.
6. Tripathi, N., et al., Exploring the Wound Healing Potential of *Tridax procumbens* Extract: A Comprehensive Analysis through in vitro Cytotoxicity and Scratch Assay Studies. 2024.
7. Li, J., Chen, R.Kirsner, Pathophysiology of acute wound healing. *Clinics in dermatology*, 2007;25(1):9-18.
8. Stadelmann, W.K., A.G. Digenis, and G.R. Tobin, Physiology and healing dynamics of chronic cutaneous wounds. *The American journal of surgery*, 1998. 176(2): p. 26S-38S.
9. Alam, G., M.P. Singh, and A. Singh, Wound healing potential of some medicinal plants. *International journal of Pharmaceutical sciences Review and Research*, 2011. 9(1): p. 136-145.
10. Kumar, B., et al., Ethnopharmacological approaches to wound healing—exploring medicinal plants of India. *Journal of ethnopharmacology*, 2007. 114(2): p. 103-113.
11. Roshan, S., et al., PHCOG MAG.: Research Article Wound Healing activity of *Abutilon Indicum*. *Phcog Mag*, 2008. 4(15): p. 85.
12. Laut, M., N. Ndaong, and T. Utami. Cutaneous wound healing activity of herbal ointment containing the leaf extract of *Acalypha indica* L. on mice (*Mus musculus*). in *Journal of Physics: Conference Series*. 2019. IOP Publishing.
13. Goyal, B.R., R.K. Goyal, and A.A. Mehta, PHCOG rev.: plant review phyto-pharmacology of *Achyranthes aspera*: a review. *Pharmacogn Rev*, 2007. 1(1): p. 143-150.
14. Fikru, A., et al., Evaluation of in vivo wound healing activity of methanol extract of *Achyranthes aspera* L. *Journal of ethnopharmacology*, 2012. 143(2): p. 469-474.
15. Edwin, S., et al., Wound healing and antioxidant activity of *Achyranthes aspera*. *Pharmaceutical biology*, 2008. 46(12): p. 824-828.
16. Panara, K., et al., Review on research studies of vasapatra (leaf of *Adhatoda vasica* nees.). *IJP*, 2014. 1(3): p. 168-173.
17. Subhashini, S. and K.D. Arunachalam, Investigations on the phytochemical activities and wound healing properties of *Adhatoda vasica* leave in Swiss albino mice. *Afr J Plant Sci*. 2011.5(2): p. 133-145.
18. Petricevich, V.L. and R. Abarca-Vargas, *Allamanda cathartica*: a review of the phytochemistry, pharmacology, toxicology, and biotechnology. *Molecules*, 2019. 24(7): p. 1238.

19. Nayak, S., et al., Evaluation of wound healing activity of *Allamanda cathartica*. L. and *Laurus nobilis*. L. extracts on rats. *BMC complementary and alternative medicine*, 2006. 6: p. 1-6.
20. Oryan, A., et al., Effect of aqueous extract of *Aloe vera* on experimental cutaneous wound healing in rat. *Veterinarski arhiv*, 2010. 80(4): p. 509-522.
21. Soni, H., et al., Evaluation of Wound Healing Activity of Methanolic extract of *Annona Squamosa* Leaves in Hydrogel delivery system. *Am. J. Pharmtech. Res*, 2018. 8: p. 13.
22. Nayak, B.S., et al., Wound-healing potential of an ethanol extract of *Carica papaya* (Caricaceae) seeds. *International Wound Journal*, 2012. 9(6): p. 650-655.
23. Mahmood, A., K. Sidik, and I. Salmah, Wound healing activity of *Carica papaya* L. aqueous leaf extract in rats. *International Journal of Molecular Medicine and Advance Sciences*, 2005. 1(4): p. 398-401.
24. Bhalerao, S.A., et al., Bioactive constituents, ethnobotany and pharmacological prospectives of *Cassia tora* Linn. *Int J Bioassays*, 2013. 2(11): p. 1421-1427.
25. BAKORIYA, R., et al., Formulation and evaluation of Wound Healing activity of methanolic leaf extract of *Cassia tora*.
26. Ogunka-Nnoka, C., et al., Nutrient and phytochemical composition of *Centella asiatica* leaves. *Med. Aromat. Plants*, 2020. 9: p. 2167-0412.
27. Shetty, B.S., et al., Effect of *Centella asiatica* L (Umbelliferae) on normal and dexamethasone-suppressed wound healing in Wistar Albino rats. *The International Journal of Lower Extremity Wounds*, 2006. 5(3): p. 137-143.
28. Ahmad, T., et al., Phytochemicals in *Daucus carota* and their health benefits. *Foods*, 2019. 8(9): p. 424.
29. Patil, M.V.K., A.D. Kandhare, and S.D. Bhise, Pharmacological evaluation of ethanolic extract of *Daucus carota* Linn root formulated cream on wound healing using excision and incision wound model. *Asian Pacific Journal of Tropical Biomedicine*, 2012. 2(2): p. S646-S655.
30. Kumari, P. and C. Kumari, "Erythrina variegata L." The Coral Tree: A Review. *Journal of Medical Science and Clinical Research*, 2017. 5: p. 26705-26715.
31. Kurbetti, S., et al., Wound healing activity of bark of *Erythrina indica* Linn (Fabaceae). *International Journal of Pharmaceutical Research and Bio-Science*, 2014. 3(1): p. 370-377.
32. Anwar, F., et al., *Moringa oleifera*: a food plant with multiple medicinal uses. *Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives*, 2007. 21(1): p. 17-25.
33. Damayanti, K.D., et al., Effectiveness of vaseline ointment ethanol extract of *moringa* leaf (*Moringa oleifera*) on incision wound healing. *Bali Medical Journal*, 2024. 13(1): p. 1210-1215.
34. Rathi, B., S. Bodhankar, and A. Baheti, Evaluation of aqueous leaves extract of *Moringa oleifera* Linn for wound healing in albino rats. 2006.
35. Rahman, S., et al., *Ocimum sanctum* L.: A review of phytochemical and pharmacological profile. *American journal of drug discovery and Development*, 2011. 1: p. 1-15.
36. Jayapal, V., et al., Evaluation of wound healing potential of the essential oil of *Ocimum sanctum* L.(Thulasi/basil) containing ointment in female Wistar albino rats. *Journal of Pharmacognosy and Phytochemistry*, 2023. 12(1): p. 189-193.
37. Shetty, S., S. Udupa, and L. Udupa, Evaluation of antioxidant and wound healing effects of alcoholic and aqueous extract of *Ocimum sanctum* Linn in rats. *Evidence-Based Complementary and Alternative Medicine*, 2008. 5: p. 95-101.
38. Singh, O.M. and T.P. Singh, Phytochemistry of *Solanum xanthocarpum*: an amazing traditional healer. 2010.
39. Kumar, N., D. Prakash, and P. Kumar, Wound healing activity of *Solanum xanthocarpum* Schrad. & Wendl. fruits. 2010.
40. Sipahi, H., et al., A comprehensive study to evaluate the wound healing potential of okra (*Abelmoschus esculentus*) fruit. *J Ethnopharmacol*, 2022. 287: p. 114843.
41. Gautam, M., et al., In vivo healing potential of *Aegle marmelos* in excision, incision, and dead space wound models. *The Scientific World Journal*, 2014. 2014(1): p. 740107.
42. Tsala, D.E., et al., Effect of a methanol extract of *Allium cepa* Linn. on incisional wound healing in alloxan-induced diabetic mice. *Appl Med Res*, 2015. 1(3): p. 90-93.
43. Vittalrao, A.M., P.K. SE, and S. Prabhath, Evaluation of wound healing activity of an ethanolic extract of *Anacardiumoccidentale* leaves in wistar rats. *Biomedical and Pharmacology Journal*, 2020. 13(4): p. 2061-2068.
44. Sandhiutami, N.M.D., et al., Enhanced wound healing effect of *Areca catechu* L. ointment via antibacterial activity and anti-inflammatory process at grade II A burns in rats. *Journal of Herbmed Pharmacology*, 2023. 12(3): p. 388-398.
45. Shirwaikar, A., et al., Wound healing studies of *Aristolochia bracteolata* Lam. with supportive action of antioxidant enzymes. *Phytomedicine*, 2003. 10(6-7): p. 558-562.

46. Sumitra, M., P. Manikandan, and L. Suguna, Efficacy of *Butea monosperma* on dermal wound healing in rats. *The International Journal of Biochemistry & Cell Biology*, 2005. 37(3): p. 566-573.
47. Shafeie, N., A.T. Naini, and H.K. Jahromi, Comparison of different concentrations of *Calendula officinalis* gel on cutaneous wound healing. *Biomedical & Pharmacology Journal*, 2015.8(2): 979-992.
48. Deshmukh, P.T., et al., Wound healing activity of *Calotropis gigantea* root bark in rats. *Journal of ethnopharmacology*, 2009. 125(1): p. 178-181.
49. Kumar, M.S., et al., Wound healing potential of *Cassia fistula* on infected albino rat model. *Journal of Surgical Research*, 2006. 131(2): p. 283-289.
50. Nayak, B. and L.M. Pinto Pereira, *Catharanthus roseus* flower extract has wound-healing activity in Sprague Dawley rats. *BMC Complementary and Alternative medicine*, 2006. 6: p. 1-6.
51. Singh, H., et al., Wound healing potential of *Cleome viscosa* Linn. seeds extract and isolation of active constituent. *South African Journal of Botany*, 2017. 112: p. 460-465.
52. Garg, V.K. and S.K. Paliwal, Wound-healing activity of ethanolic and aqueous extracts of *Ficus benghalensis*. *Journal of advanced pharmaceutical technology & research*, 2011. 2(2): p. 110-114.
53. Murti, K. and U. Kumar, Enhancement of wound healing with roots of *Ficus racemosa* L. in albino rats. *Asian Pacific journal of tropical biomedicine*, 2012. 2(4): p. 276-280.
54. Dash, G. and P. Murthy, Studies on wound healing activity of *Heliotropium indicum* Linn. leaves on rats. *International Scholarly Research Notices*, 2011. 2011.
55. Ganesan, S., et al., Wound healing activity of *Hemidesmus indicus* formulation. *Journal of Pharmacology and Pharmacotherapeutics*, 2012. 3(1): p. 66-67.
56. Bhaskar, A. and V. Nithya, Evaluation of the wound-healing activity of *Hibiscus rosa sinensis* L (Malvaceae) in Wistar albino rats. *Indian journal of pharmacology*, 2012. 44(6): p. 694-698.
57. Upadhyay, A., et al., *Ixora coccinea* enhances cutaneous wound healing by upregulating the expression of collagen and basic fibroblast growth factor. *International Scholarly Research Notices*, 2014. 2014.
58. Esimone, C., C. Nworu, and C. Jackson, Cutaneous wound healing activity of a herbal ointment containing the leaf extract of *Jatropha curcas* L.(Euphorbiaceae). *International Journal of Applied Research in Natural Products*, 2008. 1(4): p. 1-4.
59. Hirapara, H., et al., Effects of ethanolic extract of *Jasminum grandiflorum* Linn. flowers on wound healing in diabetic Wistar albino rats. *Avicenna journal of phytomedicine*, 2017. 7(5): p. 401.
60. Nayak, B.S., et al., The evidence based wound healing activity of *Lawsonia inermis* Linn. *Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives*, 2007. 21(9): p. 827-831.
61. Saha, K., et al., Wound healing activity of *Leucas lavandulaefolia* Rees. *Journal of Ethnopharmacology*, 1997. 56(2): p. 139-144.
62. Sharma, S., M.C. Sharma, and D. Kohli, Wound healing activity and formulation of ether-benzene-95% ethanol extract of herbal drug *Madhuca longifolia* leaves in albino rats. *Journal of optoelectronics and Biomedical materials*, 2010. 1(1): p. 13-15.
63. Paul, J., S.M. Saifulla Khan, and B. Asdaq, Wound healing evaluation of chloroform and methanolic extracts of *mimosa pudica* roots in rats. *Int J Biol Med Res*, 2010. 1(4): p. 223-227.
64. Nayak, B.S., S. Sandiford, and A. Maxwell, Evaluation of the wound-healing activity of ethanolic extract of *Morinda citrifolia* L. leaf. *Evidence-based complementary and alternative medicine*, 2009. 6: 351-356.
65. Bhatia, N., et al., Evaluation of burn wound healing potential of aqueous extract of *Morus alba* based cream in rats. *The Journal of Phytopharmacology*, 2014. 3(6): p. 378-383.
66. Sharma, Y., et al., Preclinical assessment of stem of *Nicotiana tabacum* on excision wound model. *Bioorg Chem*, 2021. 109: p. 104731.
67. Talekar, Y., et al., Wound healing activity of aqueous and ethanolic extract of bark of *Emblica officinalis* in Wistar rats. *Inventi Impact: Planta Activa*, 2012. 4: p. 1-5.
68. Bhandirge, S., et al., Evaluation of wound healing activity of ethanolic extract of *Pongamia pinnata* bark. *Drug Research*, 2015: p. 296-299.
69. Asadi, M.S., et al., Evaluation of wound healing activities of pomegranate (*Punica granatum*-Lythraceae) peel and pulp. *JRMDS*, 2018. 6(3): p. 230-236.
70. Umachigi, S., et al., Studies on wound healing properties of *Quercus infectoria*. *Tropical journal of Pharmaceutical research*, 2008. 7(1): p. 913-919.
71. Karodi, R., et al., Evaluation of the wound healing activity of a crude extract of *Rubia cordifolia* L.(Indian madder) in mice. *International Journal of Applied Research in Natural Products*, 2009. 2(2): p. 12-18.
72. Kiran, K. and M. Asad, Wound healing activity of *Sesamum indicum* L seed and oil in rats. 2008.
73. Lodhi, S., et al., Wound healing potential of *Tephrosia purpurea* (Linn.) Pers. in rats. *Journal of ethnopharmacology*, 2006. 108(2): p. 204-210.

74. Chaudhari, M. and S. Mengi, Evaluation of phytoconstituents of Terminalia arjuna for wound healing activity in rats. *Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives*, 2006. 20(9): p. 799-805.
75. Nugroho, R.A., et al. In vivo wound healing activity of ethanolic extract of Terminalia catappa L. leaves in mice (*Mus musculus*). in *Journal of Physics: Conference Series*. 2019. IOP Publishing.
76. Suguna, L., et al., Influence of Terminalia chebula on dermal wound healing in rats. *Phytotherapy Research*, 2002. 16(3): p. 227-231.
77. Nagappa, A. and B. Cherian, Wound healing activity of the aqueous extract of Thespesia populnea fruit. *Fitoterapia*, 2001. 72(5): p. 503-506.
78. Pradhan, D., P. Panda, and G. Tripathy, Wound healing activity of aqueous and methanolic bark extracts of vernonia arborea Buch.-Ham. in wistar rats. 2009.
79. Irshad, N., M. Avijit, and G. Chakraborty, Evaluation of wound healing potentiality of methanolic extract of Wedelia chinensis whole plant. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, 2013. 4(3): p. 353-359.
80. Rajan, D.S., et al., Wound healing activity of an herbal ointment containing the leaf extract of *Ziziphus mauritiana* Lam. *African Journal of Pharmacy and Pharmacology*, 2013. 7(3): p. 98-103.