

INTERNATIONAL JOURNAL OF PHARMACY AND ANALYTICAL RESEARCH

ISSN: 2320-2831

IJPAR |Vol.10 | Issue 3 | July - Sep -2021 Journal Home page: www.ijpar.com

Research Study

Open Access

A novel analytical development and validation of an rp-hplc assay method for the quantification of apalutamide in bulk and its marketed formulation

Kadirabad Rohith Kumar, Dr. G.Sai Kiran*, Ramya Sr.S, Dr. R. Hemalatha

Department of Pharmaceutical Analysis, Holy Mary Institute of Technology and Sciences (College of Pharmacy), Keesar, Medchal, Telangana, India. Sura Pharma Labs, Dilsukhnagar, Hyderabad, Telangana-500060, India.

Address of Correspondence: Dr. G.Sai Kiran

ABSTRACT

A simple, rapid, specific and accurate reverse phase high performance liquid chromatographic method has been developed for the validated of Apalutamide in bulk as well as in marketed pharmaceutical dosage form. This separation was performed on a Symmetry ODS C18 (4.6×250 mm, 5μ m) column with Methanol: Phosphate Buffer (35:65) V/V as mobile phase at a flow rate of 1.0 mL min–1 with UV detection at 235 nm; the constant column temperature was Ambient. The run time under these chromatographic conditions was less than 8 min. The retention time of Apalutamide was found to be 2.252. The calibration plot was linear over the concentration range of $6-14 \mu$ g mL–1 with limits of detection and quantification values of 1.2 and 3.6 ng mL–1 respectively. The mean % assay of marketed formulation was found to be 99.86%, and % recovery was observed in the range of 98-102%. Relative standard deviation for the precision study was found <2%. The developed method is simple, precise, specific, accurate and rapid, making it suitable for estimation of Apalutamide in bulk and marketed pharmaceutical dosage form.

Keywords: Apalutamide, RP-HPLC, Validation, ICH Guidelines.

INTRODUCTION

High Pressure Liquid Chromatography (HPLC)

High Performance Liquid Chromatography (HPLC) is a form of column chromatography that pumps a sample mixture or analyte in a solvent (known as the mobile phase) at high pressure through a column with chromatographic packing material (stationary phase). The sample is carried by a moving carrier gas stream of helium or nitrogen. HPLC has the ability to separate, and identify compounds that are present in any sample that can be dissolved in a liquid in trace concentrations as low as parts per trillion. Because of this versatility, HPLC is used in a variety of industrial and scientific applications, such as pharmaceutical, environmental, forensics, and chemicals.

High-performance liquid chromatography (HPLC; formerly referred to as high-pressure liquid chromatography) is a technique in analytical chemistry used to separate, identify, and quantify each component in a mixture. It relies on pumps to pass a pressurized liquid solvent containing the sample mixture through a column filled with a solid adsorbent material. Each component in the sample interacts slightly differently with the adsorbent material, causing different flow rates for the different components and leading to the separation of the components as they flow out of the column. HPLC has been used for manufacturing (e.g., during the production process of pharmaceutical and biological products), legal (e.g., detecting performance enhancement drugs in urine), research (e.g., separating the components of a complex biological sample, or of similar synthetic chemicals from each other), and medical (e.g., detecting vitamin D levels in blood serum) purposes.¹

Instrumentation of HPLC

Advantages

- HPLC separations can be accomplished in a minutes, in some cases even in seconds.
- High resolution of complex sample mixture into individual components.
- Rapid growth of HPLC is also because of its ability to analyze substances that are unsuitable for gas liquid chromatographic (GLC) analysis due to non-volatility or thermal-instability.
- Quantitative analysis is easily and accurately performed and errors of less than 1 % are common to most HPLC methods.
- Depending on sample type and detector used, it is frequently possible to measure 10⁻⁹ g or 1 ng of

sample. With special detectors, analysis down to 10-12 pg has been reported.

The primary objective of proposed work is

- ✓ To develop new simple, sensitive, accurate and economical analytical method for the estimation of Apalutamide in bulk and marketed pharmaceutical dosage form.
- ✓ To validate the proposed method in accordance with USP and ICH guidelines for the intended analytical application i.e., to apply the proposed method for analysis of the Apalutamide in bulk and marketed pharmaceutical dosage form.

MATERIALS

Table-1: Instruments used

S. No	Instruments and Glass wares	Model
1	HPLC	WATERS Alliance 2695 separation module, Software: Empower 2, 996 PDA detectors.
2	pH meter	Lab India
3	Weighing machine	Sartorius
4	Volumetric flasks	Borosil
5	Pipettes and Burettes	Borosil
6	Beakers	Borosil
7	Digital ultra sonicator	Labman

Table-2: Chemicals used

S. No	Chemical	Brand names
1	Apalutamide (Pure)	Sura labs
2	Water and Methanol for HPLC	LICHROSOLV (MERCK)
3	Acetonitrile for HPLC	Merck

METHODOLOGY

HPLC METHOD DEVELOPMENT Preparation of standard solution

Accurately weigh and transfer 10 mg of Apalutamide working standard into a 10ml of clean dry volumetric flasks add about 7ml of Methanol and sonicate to dissolve and removal of air completely and make volume up to the mark with Methanol. Further pipette 0.1ml of the above Apalutamide stock solution into a 10ml volumetric flask and dilute up to the mark with Methanol.

VALIDATION

PREPARATION OF BUFFER AND MOBILE PHASE Preparation of Potassium dihydrogen Phosphate (KH2PO4) buffer (pH-3.6)

Dissolve 6.8043 of potassium dihydrogen phosphate in 1000 ml HPLC water and adjust the pH 3.6 with diluted orthophosphoric acid. Filter and sonicate the solution by vacuum filtration and ultra sonication.

Preparation of mobile phase

Accurately measured 350 ml (35%) of Methanol, 650 ml of Phosphate buffer (65%) were mixed and degassed in digital ultra sonicater for 15 minutes and then filtered through 0.45 μ filter under vacuum filtration.

Diluents Preparation

The Mobile phase was used as the diluents

OPTIMIZED CHROMATOGRAPHIC CONDITIONS

:	Waters HPLC with auto sampler and PDA detector 996 model.
:	Ambient
:	Symmetry ODS C18 (4.6×250mm, 5µm)
:	Methanol: Phosphate Buffer pH-3.6 (35:65)
:	1ml/min
:	235nm
:	10µ1
:	8minutes
	: : : : : :

RESULTS AND DISCUSSION

Optimized Chromatogram (Standard) Optimized Chromatogram (Sample)

Observation: In this trial it shows proper separation of peak and more plate count in the chromatogram and the tailing factor is within the limit. So it is an optimized chromatogram.

Acceptance criteria

- Theoretical plates must be not less than 2000.
- Tailing factor must be not less than 2.
- It was found from above data that all the system suitability parameters for developed method were within the limit.

METHOD VALIDATION

System Suitability

Area (µV*sec)Height (µV) USP Plate CountUSP Tailing S.No Peak Name RT Apalutamide 2.277 1 185647 6589 1.24 1652847 2 Apalutamide 2.277 186254 6587 1.26 1653658 3 Apalutamide 2.267 185475 1.28 6584 1654521 Apalutamide 2.265 186594 4 1.29 6582 1653564 5 Apalutamide 2.277 185684 1.24 6895 1658745 Mean 1654667 Std.Dev. 2355.764 %RSD 0.142371

Table-3: Results of system suitability for Apalutamide

Specificity

Table-4: Peak results for assay standard

S.N	Name I	RT	Area	Height	U SPTailing U	USP Plate Count	Injection
1	Apalutamide2.	2651	658254	4185468	1.24	6391	1
2	Apalutamide2.	2671	658475	5184524	1.23	6549	2
3	Apalutamide2.	2671	658471	186598	1.25	6682	3

Table-5: Peak results for Assay sample

S.No	Name RT	Area	HeightU	J SPTailing	USP Plate Count	tInjection
1	Apalutamide2.246	1645879	9184574	0.85	6458	1
2	Apalutamide2.246	1645875	5183598	0.86	6584	2
3	Apalutamide2.246	1658423	3185472	0.85	6457	3

%ASSAY =

Sample area	Weight of standard	Dilution of sample	Purity	Weight of tablet	
×		×	_×	X	_×100
Standard area	Dilution of standard	Weight of sample	100	Label claim	

The % purity of Apalutamide in pharmaceutical dosage form was found to be 99.86%.

Linearity

Concentration	Average
µg/ml	Peak Area
6	1078475
8	1461129
10	1808358
12	2211573
14	2593778

Table-6: Data for Linearity of Apalutamide

CONCLUSION

Correlation Coefficient (r) is 0.99, and the intercept is 0.16179. These values meet the validation criteria.

Precision Repeatability

Table-7: Results of repeatability for Apalutamide

S. No	Peak name	Retention time	Area(µV*sec)	Height (µV)	USP Plate Count	USP Tailing
1	Apalutamide	2.293	1658954	186958	1.26	6785
2	Apalutamide	2.276	1658745	187548	1.27	6854
3	Apalutamide	2.286	1659865	189854	1.26	6852
4	Apalutamide	2.277	1653254	186985	1.25	6784
5	Apalutamide	2.280	1654781	189542	1.24	6895
Mean			1657120			
Std.dev			2913.592			
%RSD			0.175823			

Intermediate precision:

Table-8: Results of Intermediate precision for Apalutamide by Analyst 1

S.No.	Peak Name RT	Area (µV*sec)Height (µV) USP Plate Coun	tUSP Tailing
1	Apalutamide2.274		186589	6587	1.26
		1678541		0587	
2	Apalutamide2.258		186598	6221	1.26
	1	1685985		0521	
3	Apalutamide2.267		186985	6205	1.25
	1	1685745		0383	
4	Apalutamide 2.270		187854	6590	1.26
	*	1685987		0580	

Dr. G.Sai Kiran et al/Int. J. of Pharmacy and Analytical Research Vol-10(2) 2021 [259-265]

5	Apalutamide 2.264		187549	6701	1.27
	•	1698526		0721	
6	Apalutamide2.265		186598	6627	1.26
	1	1685943		0057	
Mean					
		1686788			
Std.Dev	V.				
		6463.466			
%RSE)				
		0.383182			

Table-9: Results of Intermediate precision Analyst 2 for Apalutamide

S.No Peak Name RT Area (μV *sec)Height (μV)USP Plate countUSP Tailing

1	Apalutamide2.277	1665947	167481	6854	1.25
		1003847			
2	Apalutamide2.255		167854	(705	1.26
	r · · · · · · · · · · · ·	1658989		6785	
3	Apalutamide2 265		167895	10 5 4	1 24
0	ripulatannae2.200	16508/15	10/0/0	6854	1.2.
		1039043			
4	Apalutamide 2.255		167854	6805	1.26
	-	1665964		0895	
5	Applutamida 2 253		168585		1.25
5	Aparutannuc 2.255	1650962	100505	6459	1.25
		1039803			
6	Apalutamide2.252		167859	CAEC	1.26
	1	1665986		6456	
Maan					
Mean		1662749			
Std.Dev	•				
		2501 766			
		3501.766			
%RSD					
		0.210601			

Acceptance criteria

• %RSD of Six different sample solutions should not more than 2.

Accuracy

Table-10: The accuracy results for Apalutamide

%Concentration (at specification Level)	Area	Amount Added (ppm)	Amount Found (ppm)	% Recovery	Mean Recovery
50%	109068.3	5	5.021	100.420%	
100%	202187	10	10.054	100.540%	100.72%
150%	297032.3	15	15.181	101.206%	

The results obtained for recovery at 50%, 100%, 150% are within the limits. Hence method is accurate.

Limit Of Detection For Apalutamide

LOD= 3.3 × σ / s Where σ = Standard deviation of the response S = Slope of the calibration curve

Result

 $= 1.2 \mu g/ml$

Limit Of Quantitation For Apalutamide LOQ=10×σ/S

Where $\sigma =$ Standard deviation of the response

S = Slope of the calibration curve **Result** = 3.6µg/ml **Robustness** *Variation in flow*

Table-11:	Results	for	Robustness
-----------	---------	-----	------------

Parameter used for sample analysis	Peak Area	Retention Time	Theoretical plates	Tailing factor
Actual Flow rate of 1.0 mL/min	1658242	2.312	6569	1.24
Less Flow rate of 0.9 mL/min	1854215	2.458	6865	1.35
More Flow rate of 1.1 mL/min	1758468	2.032	6254	1.32

Acceptance criteria

The tailing factor should be less than 2.0 and the number of theoretical plates (N) should be more than 2000.

CONCLUSION

In the present investigation, a simple, sensitive, precise and accurate RP-HPLC method was developed for the quantitative estimation of Apalutamide in bulk drug and pharmaceutical dosage forms.

This method was simple, since diluted samples are directly used without any preliminary chemical derivatisation or purification steps.

Apalutamide was freely soluble in methanol, ethanol, and chloroform, soluble in ether, sparingly soluble in acetonitrile and octanol, and practically insoluble in water.

Methanol: Phosphate Buffer (35:65) V/V was chosen as the mobile phase. The solvent system used in this method was economical.

The %RSD values were within 2 and the method was found to be precise.

The results expressed in Tables for RP-HPLC method was promising. The RP-HPLC method is more sensitive, accurate and precise compared to the Spectrophotometric methods.

This method can be used for the routine determination of Apalutamide in bulk drug and in Pharmaceutical dosage forms.

ACKNOWLEDGEMENT

The Authors are thankful to Sura Labs, Dilshukhnagar, and Hyderabad for providing the necessary facilities for the research work.

REFERENCES

- 1. Dr. Kealey, Haines PJ. Analytical Chemistry, 1st edition. Bios Publisher; 2002. P. 1-7.
- 2. BraithWait A, Smith FJ. Chromatographic methods, 5thedition. Kluwer Academic Publishers; 1996. P. 1-2.
- 3. Weston Andrea, Phyllisr. Brown, HPLC principle and practice, 1stedition. Academic press; 1997. P. 24-37.
- 4. Kazakevich Yuri, Lobrutto Rosario. HPLC for Pharmaceutical Scientists, 1stedition. Wiley Interscience A JohnWiley & Sons, Inc Publishing Group; 2007. P. 15-23.
- 5. Chromatography [online]. Available from: http://en.wikipedia.org/wiki/Chromatography [cited 8/7/2021].
- 6. Meyer VR. Practical high-performance liquid chromatography, 4thEd. England. John Wiley & Sons Ltd; 2004. P. 7-8.
- 7. Sahajwalla CG a new drug development. Vol. 141. New York: Marcel Dekker, Inc; 2004. P. 421-6.
- 8. Introduction to column [online]. Available from: http://amitpatel745.topcities.com/index_files/study/columncare.pdf [cited 8/7/2021].
- 9. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/arn-509 [cited 8/7/2021].
- 10. Available from: https://en.wikipedia.org/wiki/Apalutamide [cited 8/7/2021].
- Zakkula Ashok, Kiran Vinay, Todmal Umesh, Sulochana Suresh P, Mullangi Ramesh. RP-HPLC-UV Method for Simultaneous Quantification of Second Generation Non-Steroidal Antiandrogens Along with their Active Metabolites in Mice Plasma: Application to a Pharmacokinetic Study. Drug Res (Stuttg). 2019; 69(10):537-44. doi: 10.1055/a-0790-8309. PMID 30536259.
- 12. Rani Jasthi Sandya, Devanna Nayakanti. Method development and validation of Enzalutamide pure drug substance by using liquid chromatographic technique. JCHPS. 2018; 11(S01):5-9. doi: 10.30558/jchps.201811s01002.
- 13. Chaitanya G, Venkata Ramana G, Pawar AKM. RP-HPLC method development and validation of capecitabine in bulk drug and formulation. Int J Pharm Anal Res. 2016; 5(1): [190-8].