

International Journal of Pharmacy and Analytical Research (IJPAR)

IJPAR | Vol.14 | Issue 3 | Jul - Sept -2025

www.ijpar.com

ISSN: 2320-2831

DOI : <https://doi.org/10.61096/ijpar.v14.iss3.2025.504-515>

Research

Liquid Chromatography-Mass Spectrometry (LC-MS) in Modern Analytical Sciences: An Overview of Method Validation and Applications

Rajasekaran C^{*1}, Jenitha M², Gokulnath V², Siranjivi D², Harini K², Nisha K², Dr. P. Peruma³

¹Associate Professor, Department of Pharmaceutical Analysis, JKK Munirajah Institute of Health Sciences College of Pharmacy, TN Palayam, Erode, Tamilnadu, India

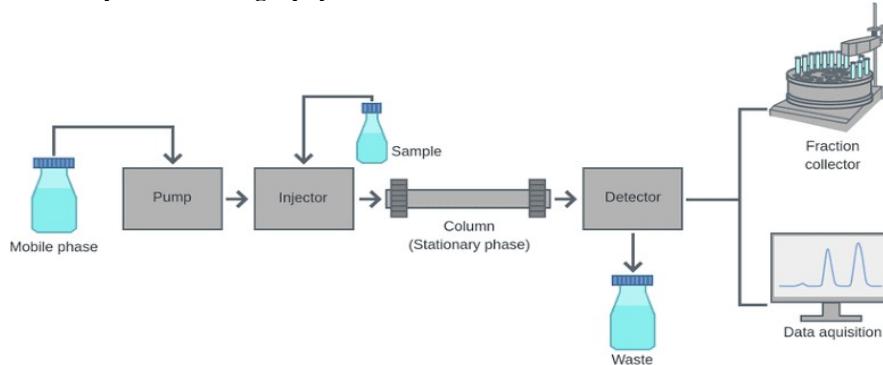
²UG Student, JKK Munirajah Institute of Health Sciences College of Pharmacy, TN Palayam, Erode, Tamilnadu, India

³Principal, JKK Munirajah Institute of Health Sciences College of Pharmacy, TN Palayam, Erode, Tamilnadu, India

*Author for Correspondence: C. Rajasekaran., M.Pharm.
Email: rajasekar301199@gmail.com

	Abstract
Published on: 22 July 2025	This article provides a comprehensive overview of liquid chromatography-mass spectrometry (LC-MS), a powerful hyphenated analytical technique that combines the separation capabilities of liquid chromatography with the detection and structural elucidation strengths of mass spectrometry. LC-MS has become indispensable across diverse fields such as pharmaceuticals, bioinformatics, proteomics, metabolomics, and lipidomics due to its high sensitivity, specificity, and ability to analyze complex biological matrices. The article highlights the evolution of LC-MS, emphasizing its applications in qualitative and quantitative analysis, enabling rapid method development, and providing detailed molecular information. Key components of LC-MS include liquid chromatography systems comprising pumps, sample injectors, and columns along with mass spectrometers responsible for ionization, separation, and detection of analytes based on their mass-to-charge ratios. The article also discusses important parameters such as sensitivity, specificity, and the concepts of selectivity and specificity, essential for method validation. Additionally, the principles of chromatographic separation, the significance of the interaction between mobile and stationary phases, and the instrumental aspects including detection techniques are elaborated. Overall, LC-MS represents a significant advancement in analytical science, offering unparalleled performance in analyzing complex samples with precision, efficiency, and broad applicability across scientific disciplines.
Published by: Futuristic Publications	
2025 All rights reserved.	
	Creative Commons Attribution 4.0 International License.
	Keywords: LC-MS, Validation, System suitability, Parameter.

INTRODUCTION


Chromatography

Chromatography is an extensively used fashion for separating individual factors from a admixture, grounded on their movement through two different phases a stationary phase and a mobile phase. The term "chromatography" comes from the Greek words "Chroma" meaning colour, and "Graphein" meaning to write, pertaining to the early use of this fashion to separate multi coloured substances. It was first introduced in 1903 by Mikhail Tsvet, a Russian botanist, who separated factory colours using a column filled with calcium carbonate.

Liquid chromatography

- Liquid chromatography (LC) is a technique used to separate the individual components of a mixture. This process relies on the mass transfer between a sample and a polar mobile phase, as well as a non-polar stationary phase.
- LC works by separating molecules in a liquid mobile phase through a solid stationary phase. The separation process is driven by the interactions between the sample and both phases, and it can be applied for either analytical or preparative purposes.
- This technology often involves sophisticated instruments that operate at high pressures,
- Which is why the terms LC and HPLC (High-Performance Liquid Chromatography) are often used interchangeably.
- The method is popular due to its sensitivity, ease of automation, and suitability for accurate quantitative measurements.
- It is particularly valuable for separating non-volatile or thermally sensitive compounds, and it has broad applicability across many scientific fields and industries.
- Columns used in LC are packed with solid particles, typically ranging from 50 to 500 cm in length, and coated with an adsorbed liquid to form the stationary phase.
- To ensure efficient flow rates through the stationary phase, the solid particle size is generally kept between 150 to 200 microns.

Instrumentation: liquid chromatography

Solvent reservoir

High Pressure Liquid Chromatography makes use of a single solvent or a mixture of solvent as a mobile phase, which is contained in a reservoir. The modern HPLC equipment have two or more reservoir from which different solvent can be introduced into a chamber at the rates which can be varied so adjust the polarity of mobile phase.

Pumps

It consists of material which is inert towards solvents or any mixed composition of aqueous buffer and organic solvents. It convey high volume of mobile phase up to 10mL/min. The high pressure generated by HPLC pumps doesn't constitute an explosion hazard, because liquids are not terribly compressible. There are three types of pumps are use in HPLC. They are described below:

1. Reciprocating pumps
2. Syringe or displacement type of pumps
3. Pneumatic or constant pressure pumps.

Sample injector

A sample volume is introduced into the chromatographic system using it. Typically, one can inject a sample

volume ranging from $1\mu\text{L}$ to $100\mu\text{L}$. Up to a 2 mL volume, the injector loop can be used to enhance the injection volume. Automatic and manual injectors are the two main types of injectors that are employed. Compared to manual injectors, automatic injectors are more precise, accurate, and comfortable to use.

Columns

It is a stationary phase made up of carbon chains combined with silica material. Typically, columns with lengths ranging from 50 to 300 mm are employed. Octadecyl (C18), Octyl (C8), Cyano, Amino, and Phenyl packing are the columns used in HPLC. Depending on the type of compound that needs to be separated, different columns are used.

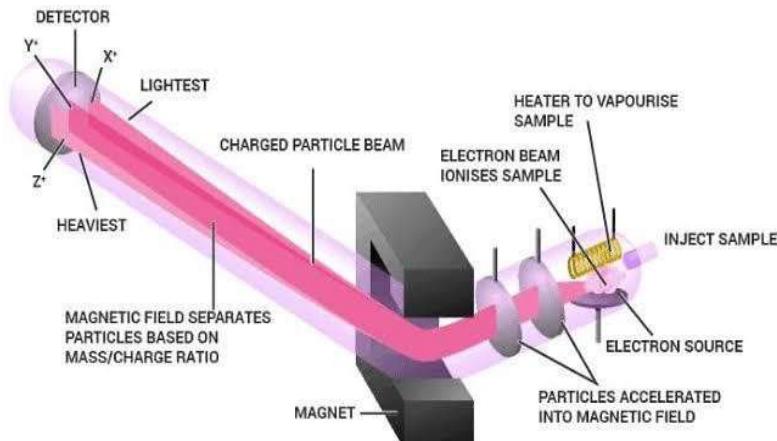
Detectors and recorder

The detectors is most important part of HPLC. There are various types of detectors used are UV- Visible detectors, PDA detectors, Refractive index (RI) detectors, electrochemical detector, Fluorescence detectors and conductivity detectors. The signal accepted from detector are often recorded as peak and respective data can be stored in a software.

Mass spectroscopy

Mass spectrometry is a technique that uses a mass spectrometer to generate ions and separate they based on their mass-to-charge ratio (m/z). The process of mass spectrometric analysis typically involves the following steps:

Atomization: The sample is converted into atoms.


Ionization: A fraction of the atoms from the previous step is ionized to form charged particles (ions).

Ion Separation: The ions are then separated based on their mass-to-charge ratio (m/z), where M represents the ion's mass in atomic mass units, and Z is the number of elementary charges the ion carries.

Mass spectrometry is commonly used in three main applications:

- Measuring molecular masses (or molecular weights) with high precision.
- Identifying fragmentation patterns within a molecule to understand how it breaks apart.
- Analysing unknown compounds by comparing their mass spectra to know reference data for identification.

Instrumentation of spectroscopy

1. Ionization Sources and Interfaces
2. Mass Analysers
3. Detector

Ionization sources and interfaces

The liquid chromatography method separates liquid mixtures, most commonly consisting of methanol, acetonitrile, and water. This mixture-containing liquid is poured into the mass spectrometer's ion source. Given that the ion source is highly vacuumed, it is challenging to mass evaporate the liquid droplets without losing the component mixture because of the pressure difference. Interfaces are thus utilized to address this issue. The interface between a liquid phase technique which continuously flows liquid, and a gas phase technique carried out in a vacuum was difficult for a long time. The advent of electrospray ionization changed this. The interface is most often an electrospray ion source or variant such as a nano spray source; however atmospheric pressure chemical ionization interface is also used. Various techniques of deposition and drying have also been used such as using moving belts; however, the most common of these is off-line MALDI deposition. A new approach still

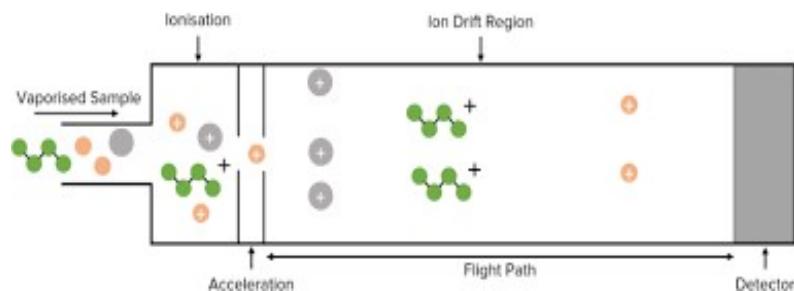
under development called Direct-EI LC-MS interface which couples a nano HPLC system with a mass spectrometer equipped with electron ionization. The following is a description of the many interface types that are frequently seen in mass spectrometers.

Direct liquid Introduction (DLI)

Direct Liquid Introduction (DLI), ionization is often achieved by vaporizing the solvent to produce a chemical reagent gas and ionization. Solvent systems in both the normal and reverse phases have been employed. Methanol/water and acetonitrile/water mixtures up to 60% water are the reverse- phase solvents that are used. Salt-containing buffers are generally prohibited because they increase the risk of capillary plugging during heating. Thermal energy and liquid flow rate are combined to operate Direct Liquid Introduction (DLI). Only a restricted flow rate of the liquid enters the contact. Analyte ions generated with the aid of thermal energy were subsequently introduced into the ion source via a pinhole diaphragm or capillary inlet.

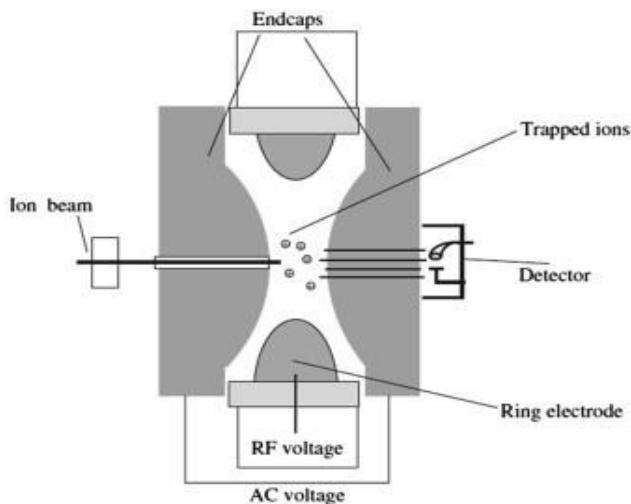
Atmospheric-Pressure Ionization (API)

Three main phases make up atmospheric pressure ionization (API): nebulization, evaporation, and ionization. The two primary methods of atmospheric pressure ionization (APCI) and electrospray ionization (ESI) are known as API. In atmospheric pressure ionization (API), a mist of tiny droplets is created when a stream of liquid (solvent) carrying a sample is pushed through a thin capillary tube and nebulized in a huge chamber. There is an ionization process, and a certain percentage of droplets have an excess of either a positive or negative electrical charge. Solvent evaporation occurs in a huge heating chamber. The solvent disappears from the droplets, causing them to get progressively smaller. The ions and molecules collide with one another. After that, the produced ions entered the mass analyser via a capillary.

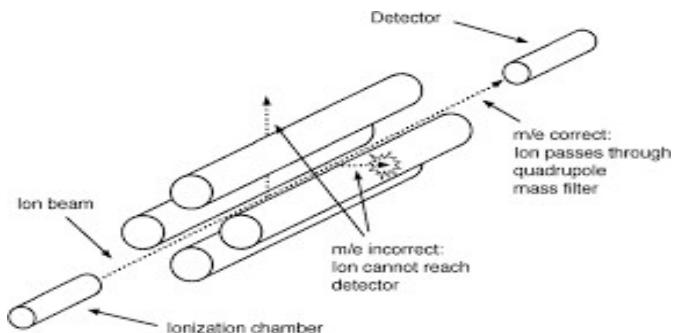

Electrospray Ionization (ESI)

Fenn and his colleagues invented the most useful ion source, called Electrospray Ionization (ESI). The liquid sample used in electrospray ionization (ESI) was run through a stain- resistant steel capillary tube that was kept at a high positive or negative electric potential (approximately 3-5 kV). This leads to the formation of charged droplets at the capillary tip, which vaporize later. The solvent evaporation causes the droplets to shrink and increase in surface charge. The highly charged droplets collide until they transform into gas-phase ions. These gas-phase ions enter the low-pressure area of the ion source via the capillary sampling opening. The main benefit of ESI is that it increases the amount of charge in ions by one to three when the molecule is 1000 DA or higher. As a result, the m/z ratio is consistently less than 2000. The molecular weight of peptides, proteins, biological samples, polymers, nucleotides, sugars, and organometallics can be determined using LC-MS with electrospray ionization (ESI) shown in Additionally, biological research and medical analysis regularly employ it.

Mass analyzer


Time-of-flight (TOF) detectors

TOF detectors operate on the principle of measuring the time it takes for ions to travel a known distance after being accelerated by an electric field the time-of-flight is directly proportional to the mass-to- charge ratio of the ions, allowing for precise determination of molecular weights. TOF detectors are particularly valued for their high mass accuracy, sensitivity and ability to analyse high molecular weight compounds, such as proteins.


Ion trap detectors

These Detectors work by trapping ions in electromagnetic fields and then ejecting them based on their mass-to-charge ratios for detection ions traps can store ions for extended periods, allowing for detailed structural analysis through techniques like MS/MS(tandem mass spectrometry).they are especially useful for analyzing complex mixtures and identifying trace components.

Quadrupole mass analyzer

Quadrupole consists of four parallel rods that create a quadrupole electric field when a combination of ratio frequency (RF) and direct current (dc) voltages are applied. This field allows ions of specific mass-to-charge ratios to pass through while filtering out others, based on their stability in the oscillating electric field. Quadrupoles can be used as standalone mass analyser or in combinations with other types, such as triple quadrupole systems for enhanced specificity and sensitivity.

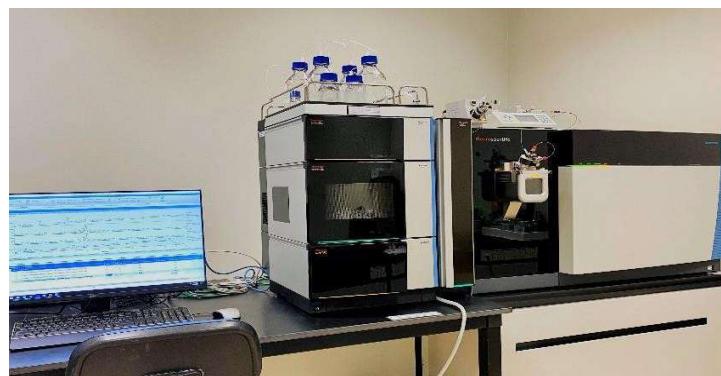
Fourier Transfer Ion Cyclotron Resonance (FT-ICR)

The primary mass spectrometer is the Fourier transfer ion cyclotron resonance. After leaving the ionization source, the ions are sorted based on their m/z ratio in mass spectrometer. The ions that enter the chamber are imprisoned in circles. Both the magnetic and electric fields accelerate the ions. The ions become excited as a result, producing a time dependent current. The mass-to-charge (m/z) ratios of the trapped ions caused them to split.

Detectors

One crucial component of a mass spectrometer is the detector, which generates current in direct proportion to the number of ions that strike it. After the ions are created and exit the analyser, they must be found and converted into a signal. The types of detectors that are frequently used are described below.

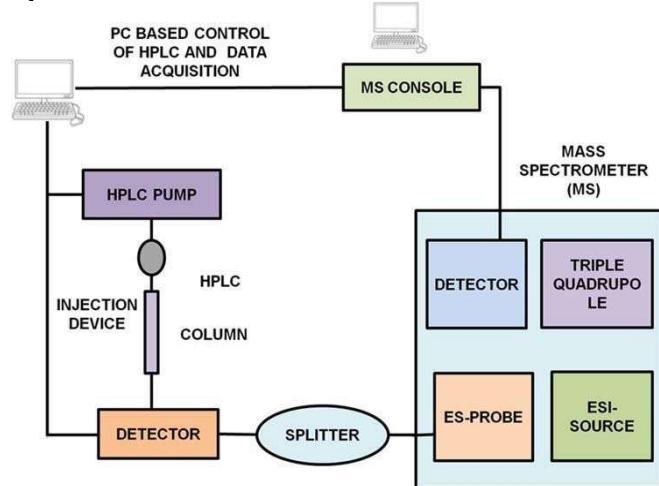
Point Ion Collectors Detectors


In this, the mass spectrometer's ion collectors are positioned at a fixed point. Every ion is concentrated on the detector, which is positioned in a single spot. The data can be recorded along with the arrival of ions through the electric current flow. The number of ions that reach the point ion detector determines how much electric current flows there.

Array Detector

A group of point collectors arranged in a plane is called an array detector. In an array detector, the ions arrive at a spot or across a plane. Using a point ion collector, the ions with mass-to-charge (m/z) values are separated and recorded along a plane. In an array detector, spatially distinct ions having a mass range are concurrently

detected.


Liquid chromatograph–mass spectrometry

Liquid Chromatography-Mass Spectrometry (LC-MS) is a powerful analytical tool that merges the separation efficiency of Liquid Chromatography (LC) with the precise detection and structural identification capabilities of Mass Spectrometry (MS). This combined technique is extensively utilized in pharmaceutical research, especially for evaluating dissolution, bioavailability, bioequivalence, and pharmacodynamics.

Preparative LC-MS systems are particularly advantageous for the rapid, mass-targeted purification of specific components from complex mixtures. This functionality is essential for research and development activities across a range of sectors, including pharmaceuticals, agrochemicals, food sciences, and other related industries.

LC-MS working principle

In LC-MS, an interface is required to effectively transfer the liquid eluents from the LC system to the MS detector. This integrated system enhances the ability to both separate and detect substances, making LC-MS extremely valuable for analytical purposes.

Key components of LC-MS

1. Liquid chromatography: Responsible for separating mixture component based on their interactions with the mobile and stationary phases.
2. Mass spectroscopy: Identifies and quantifies the components based on their mass-to-charge ratio.

Pumps: It is made up of materials that are inert to solvents or any combination of organic solvents and an aqueous buffer. Up to 10 mL/min of high mobile phase volume is delivered by it. Syringe pumps, constant-pressure pumps, and reciprocating pumps are the three main types of pumps that are employed.

Sample injector: A sample volume is introduced into the chromatographic system using it. Typically, one can inject a sample volume ranging from 1 μ L to 100 μ L. Up to a 2 mL volume, the injector loop can be used to

enhance the injection volume. Automatic and manual injectors are the two main types of injectors that are employed. Compared to manual injectors, automatic injectors are more precise, accurate, and comfortable to use.

Columns: It is a stationary phase made up of carbon chains combined with silica material. Typically, columns with lengths ranging from 50 to 300 mm are employed. Octadecyl (C18), Octyl (C8), Cyano, Amino, and Phenyl packing are the columns used in HPLC. Depending on the type of compound that needs to be separated, different columns are used.

Detector used in lc-ms technique

There are three types of detector used in mass spectroscopy

1. Electron multipliers
2. Dynolyte photomultiplier
3. Micro channel plates

Electron Multipliers dual node is used to convert disciple either positive, negative ions in to electron that will be extended and detected. This will be commonly used in four of poles and ion capture instruments. The dynode of Dynolyte photomultipliers converts the charged ions in to electrons. These electrons attach to a phosphorus and through photons, and that photons are made to strike the photomultipliers to achieve multiplied signals for record. Detectors, LC-MS system may also incorporate specialized detectors for specific applications:

Faraday cup detector: These detectors measures the ion current directly, offering high precision in quantification they are particularly useful for application requiring accurate measurement of ion abundance.

Daly detectors: These a scintillator to convert ion impacts into photons, which are then amplified by a photomultiplier tube .Daly detectors provide a high gain and are effective ions with high sensitivity. The choice of detector in LC –MS is dictated by the specific requirements of the analysis. Factors influencing the decision include:

- Sensitivity needed: The ability to detect the low- abundance compounds.
- Resolution required: The need to distinguish between ions of similar mass-to- charge ratios.
- Nature of the compounds: The molecular weight polarity and structural complexity of the analytes.
- Type of information sought: Whether the goal is molecular weight confirmation, structural elucidation, or quantitative analysis.

Each detector type offers unique advantages making them suited to different analytical challenge in LC-MS. Understanding the operational principles and capabilities of these detectors is crucial for selecting the most appropriate one for a given application, There by optimizing the analytical workflow and achieving reliable based on their mass- to -charge ratio.

Application of LC-MS

Application of LC-MS in Doping Tests Detection of 4-Methyl-2-hexanamine in Urine: Liquid Chromatography coupled with Electrospray Ionization Mass Spectrometry (LC/ESI-MS) in positive ion mode is employed for detecting 4-methyl-2-hexanamine, a potential doping agent, in urine samples. Tuaminoheptane is used as an internal standard during the analysis. The suspected substance, believed to be 4-methyl-2-hexanamine a compound commonly found in dietary supplements exhibits two unresolved peaks at retention times of 3.43 and 3.78 minutes. These peaks match those of the standard reference compound, supporting its identification.

Other Applications of LC-MS

Pharmacokinetics: LC-MS plays a vital role in studying drug absorption, distribution, metabolism, and excretion (ADME). It is extensively used in bioanalytical methods to quantify and structurally characterize pharmaceuticals and their metabolites in biological matrices such as plasma, urine, saliva, and serum.

Bioavailability and Bioequivalence Studies: LC-MS is employed in comparative bioequivalence and pharmacodynamics studies by quantifying drugs or their metabolites in biological samples. It also supports clinical trials and in vitro dissolution testing, contributing to drug development and regulatory compliance.

Molecular weight determination:

LC-MS is a reliable tool for determining the molecular weights of known and unknown compounds. It provides detailed information on molecular weight, composition, identity, and concentration of analytes. This technique is particularly useful for analysing proteins, peptides, nucleic acids, and polymers.

Assay of Drugs and Intermediates: In the pharmaceutical industry, LC-MS is utilized to assess the content (assay) of drug substances, finished products, and synthetic intermediates. Its sensitivity and specificity make it indispensable in quality control and regulatory testing.

Two-Dimensional (2D) Hyphenated Technology

LC-MS (Liquid Chromatography–Mass Spectrometry) has evolved into a powerful two-dimensional (2D) hyphenated analytical technique, widely applied across a range of disciplines. It is utilized for the analysis of proteins, peptides, amino acids, nucleic acids, carbohydrates, lipids, and more. LC-MS also plays a central role in key omics fields such as genomics, proteomics, metabolomics, and lipidomics. The adoption of LC-MS was initially driven by the demand for highly specific and sensitive analytical tools capable of separating and identifying target analytes in complex biological matrices. Over the past decade, advances in analytical and bioanalytical techniques have further emphasized the pivotal role of mass spectrometry in scientific research. As a hybrid technique combining High-Performance Liquid Chromatography (HPLC) with Mass Spectrometry (MS), LC-MS is capable of both qualitative exploration and quantitative analysis of complex mixtures. This synergy allows for enhanced separation efficiency and accurate molecular identification, making it one of the most significant innovations in modern analytical science. When coupled with mass spectrometry, LC systems gain improved durability, precision, and sensitivity, significantly boosting detection capabilities.

Advantages of LC-MS

LC-MS offers several advantages over traditional chromatographic methods, including:

High Selectivity: The mass spectrometer provides mass-specific detection, enabling the resolution of co-eluting compounds regardless of chromatographic separation limitations.

Accurate Peak Identification: In complex sample matrices, LC-MS can generate unique chemical fingerprints for analytes, ensuring precise peak assignment and identification.

Molecular Weight Determination: LC-MS delivers accurate molecular weight data, which is critical for confirming the identity and structure of both known and unknown compounds.

Structural Information: The structure of a chemical compound can be elucidated through controlled fragmentation, allowing for detailed structural analysis.

Rapid Method Development: LC-MS enables quick detection of eluted analytes without requiring prior validation of retention times, streamlining method setup.

Matrix Flexibility: The technique is highly adaptable to various sample matrices, reducing the need for extensive sample preparation and saving valuable time.

Quantitative and Qualitative Analysis: LC-MS can simultaneously provide both quantitative and qualitative data with minimal instrument tuning, enhancing efficiency and data quality.

Disadvantage

1. Expensive
2. Not portabl
3. Required an experienced technician
4. Moderate through put.

LC-MS method validation

Validation is the process of proving that an analytical method is suitable for its intended use and provides reliable, reproducible results. For highly sophisticated techniques like Liquid Chromatography-Mass Spectrometry (LC-MS), validation is especially important due to the complexity of both the instrument and the samples being analysed. LC-MS offers multiple ionization techniques and operation modes, which increases both its versatility and the potential for variability making method validation essential.

Purpose of validation

The main goal of method validation is to ensure the accuracy, precision, and consistency of results. This is critical in LC-MS applications where the method is often used to analyse complex chemical or biological samples. As regulatory requirements become more stringent, validation has become a necessity in laboratories to ensure data integrity and compliance. It not only confirms the method's reliability but also builds trust for customers and

regulatory agencies. While there is general consensus on key validation parameters such as accuracy, specificity, linearity, precision, and detection limits the exact procedures and acceptance criteria can vary depending on the guidelines followed.

Carrying out validation

Before starting the validation, a clear and detailed plan must be prepared. This includes the reason for validation, the experiments to be performed, and the expected outcomes or acceptance criteria. These criteria are often derived from regulatory guidelines such as ICH, FDA, or EMA. The plan should address each validation parameter individually, as recommended by these guidelines. In cases where the method is used under legal standards or official regulations, validation must strictly follow the prescribed requirements. The final decision on the method's suitability should be based on its ability to meet those specific regulatory expectations.

Validation process: Validation involves teamwork across departments like QA, QC, regulatory, and analytical development. The key steps include:

1. Defining the method's purpose and scope
2. Setting performance criteria
3. Planning and performing validation experiments
4. Verifying instruments and materials
5. Developing SOPs and documenting results
6. Setting criteria for revalidation and routine system suitability tests.

Not all performance parameters need to be tested in every validation. Partial validation applies when minor changes are made to an already validated method (e.g., new matrix, reagent, or lab transfer). Verification is done when adopting a fully validated method to confirm it performs as expected under local conditions.

Revalidation

Revalidation is necessary whenever a method is changed and the new parameter is outside the operating range. The operating parameters need to be specified with ranges clearly defined

Changes in equipment or chemical quality may also have critical effects on method. So any such change needs revalidation.

Validation parameters

1. Selectivity and specificity
2. Linearity
3. Range
4. Accuracy
5. Precision
6. Stability
7. Limit of detection (LOD)
8. Limit of quantification (LOQ)
9. Ruggedness and robustness
10. Sensitivity
11. Retention Factor
12. Resolution Factor
13. Capacity Factor

Selectivity and specificity

Selectivity of the analytical method is defined as the degree to which a method can quantify the analyte in the presence of interference.

- The other components which may include impurities, degradants, matrix etc.
- The term specific generally refers to a method that produces a response for a single analyte only, while the term selective refers to a method that provides responses for a number of chemical.
- entities that may or may not be distinguished from each other.
- The forced degradation studies are carried out to challenge this method.
- During forced degradation studies, the sample is subjected to the stressed conditions of light, heat, humidity, acid / base hydrolysis and oxidation.
- The selectivity of chromatographic methods may be assessed by examination of peak homogeneity or peak purity.
- Peak purity shows that there is no co-elution of any sample component.

Linearity

- Linearity of a method is its ability to obtain test results that are directly proportional to the sample concentration over a given range.
- Linearity should be evaluated by visual inspection of plot of signals as a function of analyte concentration.
- If there is linear relationship, test results should be evaluated by appropriate by statistical methods, for example, by regression analysis.
- Data from the regression line is helpful to provide mathematical estimates of the degree of linearity.
- It is generally expressed in terms of variance.
- The correlation coefficient (R) should be greater than or equal to 0.999.

Range

Range of an analytical method is the interval between the upper and lower concentration of analyte in the sample for which it has been demonstrated that the analytical procedure has a suitable level of precision, accuracy and linearity.

- The following specific ranges should be considered:
- Assay method – 80 – 120 % of the test concentration
- Content uniformity – 70 – 130 % of the test concentration, based on the nature of the dosage form.
- Dissolution study - +/- 20 % over the specified range.
- Impurity determination- from reporting level of impurity to 120% of the specification.
- Transmission efficacy which is the ratio of number of ions that are finally detected and the number Of ions that entered the mass analyser. This is an important measure of sensitivity for mass spectrometers.

Accuracy

- The accuracy of an analytical method expresses the closeness of agreement between the value accepted either as conventional true value or an accepted reference value and the value found.
- Practically no measurement process is ideal, therefore, the true value or actual value cannot be exactly known in any particular measurement.
- The accuracy studies are usually carried out by determining the recovery of spiked sample of the analyte in to the matrix of the sample (a placebo) or by comparing the result to the results of a certified reference material of known purity.
- If the placebo of the sample is not available, the technique of addition is used.
- Accuracy should be assessed using minimum of nine determinations over a minimum of three concentration levels covering the specified range.

Precision

- The degree of agreement between replicate analyses of a homogenous sample, usually measured as the relative standard deviation (RSD) as a set of replicates.
- The measured standard deviation can be subdivided in to three categories:
 - Repeatability
 - Intermediate precision
 - Reproducibility
- Repeatability expresses the precision under the same operating conditions over a short interval of time. From the repeatability standard deviation is useful to calculate the repeatability limit (r),
- Which enables the analyst to decide whether the difference between duplicate analyses of a sample.
- Reproducibility expresses the precision between laboratories. From this it is useful to calculate the reproducibility limit (R), which enables the analyst to decide whether the difference between duplicate analyses of a sample, determined under reproducibility conditions is significant.

Stability

- Analyte stability is not universally included in validation guidelines as a validation parameter.
- The reason is that if the analyte is unstable its decomposition influences the trueness and precision of the procedure.
- Analyte stability must be ensured during sample collection, processing, storage, extraction and duration of the analysis to generate reliable bio-analytical data.
- Stability tests can be among the most time-consuming tests in the validation procedure.
- Stability is the lowering of the analyte content in the sample over the period of time.
- If the analyte is stable, then the concentration remains the same in time.
- Ex: 100% of the analyte degrades with time then its concentration is decreased and also the stability is lower than 100%.

Limit of detection

It is the lowest amount of the analyte in the sample which can be detected but not necessarily quantified as an exact value. The detection limit can be measured in different ways:

- Signal to noise ratio: It is determined by comparing measured signals from samples with known low concentration of analyte with those of blank values. The concentration showing signal to noise ratio between 3:1 or 2:1 is generally considered as acceptable detection limit.
- Standard deviation of response and slope.

Limit of quantification

The quantification limit of an individual analytical procedure is the lowest amount of analyte in the sample which can be quantitatively determined with suitable precision and accuracy. It is the concentration showing signal to noise ratio of 10:1. Typical acceptance criteria for LOQ are mean recovery at this level between 50-100% with % RSD of less than or equal to 25%.

Ruggedness and robustness

Ruggedness is a measure of how well a method stands up to less than perfect implementation. The robustness of an analytical procedure is a measure of its capacity to remain unaffected by small, but deliberate variations in method parameters and provide an indication of its reliability during normal usage.

System suitability

- System suitability testing (SST) is an integral part of analytical procedure. System suitability test provide the added assurance that on a specific occasion the method is giving accurate and precise results.
- Limits for system suitability tests are:
- Resolution (RS) - > 2.0
- Repeatability (RSD) - $< 1.0\%$ for five replicates.
- Plate count (N) - > 2000
- Tailing factor (TF) - < 2.0
- Separation factor - > 1.0

Sensitivity

Sensitivity is the change in the response of a measuring instrument divided by corresponding change in the stimulus. The main use of sensitivity parameter is a threefold:

1. Optimization of the method parameters during method development.
2. Daily optimization of the instrument parameters.
3. Monitoring of the instrument performance.

Retention factor (K)

Formerly referred to as capacity factor or k' (k prime), the retention factor measures the period of time that the sample component resides in a stationary phase relative to the time it resides in the mobile phase. It is calculated from the retention time divided by the time for a un retained peak (t_0) between peaks A and B than between B and C. Calculations are provided to demonstrate. Selectivity can be changed by changing the mobile phase constituents or changing the stationary phase. Temperature may also be a factor in adjusting selectivity.

Resolution factor (RS)

Resolution describes the ability of a column to separate the peaks of interest, and so the higher the resolution, the easier it is to achieve baseline separation between two peaks. Resolution takes into consideration efficiency, selectivity and retention, as can be seen, one can improve resolution by improving any one of these parameters. Figure 3a shows the impact of efficiency, selectivity and retention on resolution. As a matter of fact selectivity may be the major effective tool for optimizing resolution.

Capacity factor (K)

It is also sometimes called the retention factor .it is a crucial parameter in liquid chromatography that describes how long the compound is retained by the stationary phase relative to the time it spends in the mobile phase. it is a measure of the analytes interactions with the stationary phase

CONCLUSION

LC-MS is a powerful and adaptable analytical method that combines liquid chromatography with mass spectrometry to provide accurate qualitative and quantitative results. Its exceptional sensitivity, selectivity, and

versatility make it indispensable in pharmaceutical, bioanalytical, and research settings. The technique's capability to swiftly analyze complex samples with high precision supports applications in drug development, metabolism, and regulatory compliance. Ongoing technological improvements are expected to enhance its efficiency, resolution, and overall performance, reaffirming its position as a fundamental tool in contemporary analytical science and fostering continued scientific and industrial innovation.

REFERENCES

1. Rama rao, Thangadipalli yashwanth, Banuri usha. Liquid chromatography-mass spectrometry. *Journal Of Drug Delivery And Therapeutics*. June 2024; 14(6); 298-304. DOI: <http://dx.doi.org/10.22270/jddt.v14i6.6669>
2. Brian A, Rappold, B.S. Use of liquid chromatography and tandem mass spectrometry in clinical laboratories; part11-operation. *Annals Of Laboratory Medicine*. 2022; 42: 531-557. <https://doi.org/10.3343/alm.2022.42.5.531>.
3. Nikalje A P, Ramesh G. Liquid chromatography-Mass spectrometry and its application: A brief review. *Arc Org Inorg Chem Scil*, 2018; 1(1).
4. Shivani Bharath Kumbar and Dr. Kanchan chauhan. A Review on liquid chromatography and Mass spectrometry technique. *World Journal of Pharmaceutical Science and Research*. 2025; 4(2); 809-822. DOI: <https://doi.org/10.5281/zenodo.15274603>.
5. Velpula Aditya Prasanthi, Dr. P.V Madhavi Latha, Dr.P.Umadhevi, P.Sivalalitha. An analytical overview of liquid chromatography –Mass spectroscopy Instrumentation and Applications. *International Journal of Creative Research Thoughts*. 2024; 12: 2320-2882. DOI: www.ijcrt.org.
6. Shaikh Falzan, Pathan Faiz, Shaikh Aakib, Dr. G.J Khan, Review on Liquid chromatography-mass spectrometry Overview. *International Journal of Research in Pharmacy and Allied Science*. Dec 2023; 2(6); 115-126. <https://idealpublication.in/ijrpas/>
7. Anita Patidar, Priyadarshini kumble, A Comprehensive Review On Liquid Chromatography –Mass spectrometry: A Hypernated Technique. *Asian Journal Of Pharmaceutical Research and Development*. 2025; 13(1): 95-103. DOI: <https://dx.doi.org/10.22270/ajprd.v13i1.1509>
8. P. Sree Mahalakshmi, S.Hemant Reddy, SK. Nowshin, CH. Veena, P. Divya, B. Sahithya, Dr. K.Harinadha baba, Dr .R.Ramasubramania raja. A Review On LC-MS Method Development and Validation. *International Journal of Research and Analytical Reviews*. 2019; 1; 2348-1269. <http://ijrar.com/>
9. Panchumarthy Ravishakar, S. Anusha, Kommanaboina Supriya, U. Ajith kumar. Fundamental chromatographic parameters. *International Journal of Pharmaceutical Sciences Review and Research*. 2019; 55(2), 46-50. www.globalresearchonline.net
10. Shine sudev, Dr. Sree Jananrdhanan.V. Review on Hplc method development validation and optimization. *International Journal of Pharmaceutical Sciences Review and Research*. 2019; 56(2); DOI: <http://dx.doi.org/10.22270/jddt.v14i6.6669>
11. Dr.Ved prakash. GC-MS(Gas chromatography and mass spectroscopy) analysis of methanol leaf extract of *Rhododendron arboreum* Sm. of District Sirmaur, Himachal Pradesh, *Journal of drug delivery and therapeutics*. 2023; 13(1):123-126. DOI: <http://dx.doi.org/10.22270/jddt.v13i1.5908>.
12. Yun-Jeong Hong, Diane M. Barrette and Alyson E. Mitchell. Liquid chromatography/mass spectrometry investigation of the impact of thermal processing and storage on peach procyanidins. *Journal of agricultural and food chemistry*.2004; 52: 2366-2371.
13. William kemp. organic spectroscopy, gopaljee enterprises, Delhi 2005.
14. Kumar P R, Dinesh SR, Rini R. LC MS – Review and a recent update. *J. Pharm. Pharm. Sci.*, 2016 march 1:5(5), 377-91.
15. Becket AH and Stenlake GH. Practical pharmaceutical Chemistry, 4th Edition., CBS publishers and distributers, New Delhi, 2005.