Formulation and characterization of ethylcellulose based transdermal patches of atenolol for improved invitro skin permeation

Authors

  • Kritika Modak Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
  • Mithun Bhowmick Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
  • Soumik Laha Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
  • Pratibha Bhowmick Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India

DOI:

https://doi.org/10.61096/ijpar.v12.iss2.2023.187-196

Keywords:

Transdermal drug delivery, hydrophobic polymers and Atenolol

Abstract

The skin can be used as the site for drug administration for continuous transdermal drug infusion into the systemic circulation. For the continuous diffusion penetration of the drugs through the intact skin surface membrane-moderated systems, matrix dispersion type systems, adhesive diffusion controlled systems and micro reservoir systems have been developed. Various penetration enhancers are used for the drug diffusion through skin. In matrix dispersion type systems, the drug is dispersed in the solvent along with the polymers and solvent allowed to evaporate forming a homogeneous drug-polymer matrix. Matrix type systems were developed in the present study. In the present work, an attempt has been made to develop a matrix-type transdermal therapeutic system comprising of Atenolol with different concentration of various polymers alone using solvent evaporation technique. The physicochemical compatibility of the drug and the polymers was studied by infrared spectroscopy. The results obtained showed no physical-chemical incompatibility between the drug and the polymers. F1formulation has been selected as the best formulation among all the other formulations. The in vitro drug diffusion studies from the formulation were found to be sustained release. All the evaluation parameters obtained from the best formulation were found to be satisfactory.The data obtained from the in vitro release studies were fitted to various kinetic models like zero order, first order, Higuchi model and peppas model. From the kinetic data it was found that drug release follows peppasmodel release by diffusion technique from the polymer.

Downloads

Published

2023-05-13

How to Cite

Kritika Modak, Mithun Bhowmick, Soumik Laha, & Pratibha Bhowmick. (2023). Formulation and characterization of ethylcellulose based transdermal patches of atenolol for improved invitro skin permeation. IJPAR JOURNAL, 12(2), 187–196. https://doi.org/10.61096/ijpar.v12.iss2.2023.187-196